The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 59-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The superposition principle delivers a probabilistic representation of a solution\break $\{\mu_t\}_{t\in[0, T]}$ of the Fokker–Planck–Kolmogorov equation $\partial_t\mu_t=L^{*}\mu_t$ in terms of a solution $P$ of the martingale problem with operator $L$. We generalize the superposition principle to the case of equations on a domain, examine the transformation of the measure $P$ and the operator $L$ under a change of variables, and obtain new conditions for the validity of the superposition principle under the assumption of the existence of a Lyapunov function for the unbounded part of the drift coefficient.
Mots-clés : Fokker–Planck–Kolmogorov equation, superposition principle.
@article{FAA_2022_56_4_a5,
     author = {T. I. Krasovitskii and S. V. Shaposhnikov},
     title = {The superposition principle for {Fokker--Planck--Kolmogorov} equations with unbounded coefficients},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {59--79},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/}
}
TY  - JOUR
AU  - T. I. Krasovitskii
AU  - S. V. Shaposhnikov
TI  - The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 59
EP  - 79
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/
LA  - ru
ID  - FAA_2022_56_4_a5
ER  - 
%0 Journal Article
%A T. I. Krasovitskii
%A S. V. Shaposhnikov
%T The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 59-79
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/
%G ru
%F FAA_2022_56_4_a5
T. I. Krasovitskii; S. V. Shaposhnikov. The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 59-79. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/

[1] L. Ambrosio, “Transport equation and Cauchy problem for non-smooth vector fields”, Lect. Notes in Math., 1927, Springer, Berlin, 2008, 2–41 | MR

[2] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “O needinstvennosti veroyatnostnykh reshenii zadachi Koshi dlya uravneniya Fokkera–Planka–Kolmogorova”, Dokl. RAN. Matem., inform., prots. upr., 488 (2021), 16–20 | DOI

[3] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “O edinstvennosti veroyatnostnykh reshenii uravneniya Fokkera–Planka–Kolmogorova”, Matem. sb., 212:6 (2021), 3–42 | DOI | MR | Zbl

[4] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, Amer. Math. Soc., Providence, RI, 2015 | MR

[5] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations”, J. Dynam. Differential Equations, 33:2 (2021), 715–739 | DOI | MR | Zbl

[6] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations, arXiv: 2203.01000

[7] M. Dieckmann, “A restricted superposition principle for (non-)linear Fokker–Planck–Kolmogorov equations on Hilbert spaces”, J. Evol. Equ., 22:2 (2022), 55 | DOI | MR | Zbl

[8] A. Figalli, “Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients”, J. Funct. Anal., 254:1 (2008), 109–153 | DOI | MR | Zbl

[9] G. I. Krasovitskii, “Vyrozhdennye ellipticheskie uravneniya i needinstvennost reshenii uravneniya Kolmogorova”, Dokl. RAN, matem., 487:4 (2019), 361–364 | DOI | MR | Zbl

[10] T. G. Kurtz, “Martingale problems for conditional distributions of Markov processes”, Electron. J. Probab., 3 (1998), 1–29 | DOI | MR

[11] T. G. Kurtz, “Equivalence of stochastic equations and martingale problems”, Stochastic Analysis 2010, Springer, Berlin–Heidelberg, 2011, 113–130 | DOI | MR | Zbl

[12] T. G. Kurtz, R. H. Stockbridge, “Existence of Markov controls and characterization of optimal Markov controls”, SIAM J. Control Optim., 36:2 (1998), 609–653 | DOI | MR | Zbl

[13] D. Lacker, M. Shkolnikov, J. Zhang, Superposition and mimicking theorems for conditional McKean–Vlasov equations, arXiv: 2004.00099

[14] O. A. Manita, S. V. Shaposhnikov, “On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains”, J. Dynam. Differential Equations, 28:2 (2016), 493–518 | DOI | MR | Zbl

[15] M. Röckner, L. Xie, X. Zhang, “Superposition principle for non-local Fokker–Planck–Kolmogorov operators”, Probab. Theory Related Fields, 178:3–4 (2020), 699–733 | DOI | MR | Zbl

[16] E. Stepanov, D. Trevisan, “Three superposition principles: currents, continuity equations and curves of measures”, J. Funct. Anal., 272:3 (2017), 1044–1103 | DOI | MR | Zbl

[17] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, Berlin, 2006 | MR | Zbl

[18] D. Trevisan, “Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients”, Electron. J. Probab., 21 (2016), 22 | DOI | MR | Zbl

[19] X. Zhang, G. Zhao, “Singular Brownian diffusion processes”, Commun. Math. Stat., 6:4 (2018), 533–581 | DOI | MR | Zbl

[20] A. K. Zvonkin, “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, unichtozhayuschee snos”, Matem. sb., 93:1 (1974), 129–149 | Zbl