Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_4_a5, author = {T. I. Krasovitskii and S. V. Shaposhnikov}, title = {The superposition principle for {Fokker--Planck--Kolmogorov} equations with unbounded coefficients}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {59--79}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/} }
TY - JOUR AU - T. I. Krasovitskii AU - S. V. Shaposhnikov TI - The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 59 EP - 79 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/ LA - ru ID - FAA_2022_56_4_a5 ER -
%0 Journal Article %A T. I. Krasovitskii %A S. V. Shaposhnikov %T The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients %J Funkcionalʹnyj analiz i ego priloženiâ %D 2022 %P 59-79 %V 56 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/ %G ru %F FAA_2022_56_4_a5
T. I. Krasovitskii; S. V. Shaposhnikov. The superposition principle for Fokker--Planck--Kolmogorov equations with unbounded coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 59-79. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a5/
[1] L. Ambrosio, “Transport equation and Cauchy problem for non-smooth vector fields”, Lect. Notes in Math., 1927, Springer, Berlin, 2008, 2–41 | MR
[2] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “O needinstvennosti veroyatnostnykh reshenii zadachi Koshi dlya uravneniya Fokkera–Planka–Kolmogorova”, Dokl. RAN. Matem., inform., prots. upr., 488 (2021), 16–20 | DOI
[3] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “O edinstvennosti veroyatnostnykh reshenii uravneniya Fokkera–Planka–Kolmogorova”, Matem. sb., 212:6 (2021), 3–42 | DOI | MR | Zbl
[4] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, Amer. Math. Soc., Providence, RI, 2015 | MR
[5] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations”, J. Dynam. Differential Equations, 33:2 (2021), 715–739 | DOI | MR | Zbl
[6] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations, arXiv: 2203.01000
[7] M. Dieckmann, “A restricted superposition principle for (non-)linear Fokker–Planck–Kolmogorov equations on Hilbert spaces”, J. Evol. Equ., 22:2 (2022), 55 | DOI | MR | Zbl
[8] A. Figalli, “Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients”, J. Funct. Anal., 254:1 (2008), 109–153 | DOI | MR | Zbl
[9] G. I. Krasovitskii, “Vyrozhdennye ellipticheskie uravneniya i needinstvennost reshenii uravneniya Kolmogorova”, Dokl. RAN, matem., 487:4 (2019), 361–364 | DOI | MR | Zbl
[10] T. G. Kurtz, “Martingale problems for conditional distributions of Markov processes”, Electron. J. Probab., 3 (1998), 1–29 | DOI | MR
[11] T. G. Kurtz, “Equivalence of stochastic equations and martingale problems”, Stochastic Analysis 2010, Springer, Berlin–Heidelberg, 2011, 113–130 | DOI | MR | Zbl
[12] T. G. Kurtz, R. H. Stockbridge, “Existence of Markov controls and characterization of optimal Markov controls”, SIAM J. Control Optim., 36:2 (1998), 609–653 | DOI | MR | Zbl
[13] D. Lacker, M. Shkolnikov, J. Zhang, Superposition and mimicking theorems for conditional McKean–Vlasov equations, arXiv: 2004.00099
[14] O. A. Manita, S. V. Shaposhnikov, “On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains”, J. Dynam. Differential Equations, 28:2 (2016), 493–518 | DOI | MR | Zbl
[15] M. Röckner, L. Xie, X. Zhang, “Superposition principle for non-local Fokker–Planck–Kolmogorov operators”, Probab. Theory Related Fields, 178:3–4 (2020), 699–733 | DOI | MR | Zbl
[16] E. Stepanov, D. Trevisan, “Three superposition principles: currents, continuity equations and curves of measures”, J. Funct. Anal., 272:3 (2017), 1044–1103 | DOI | MR | Zbl
[17] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, Berlin, 2006 | MR | Zbl
[18] D. Trevisan, “Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients”, Electron. J. Probab., 21 (2016), 22 | DOI | MR | Zbl
[19] X. Zhang, G. Zhao, “Singular Brownian diffusion processes”, Commun. Math. Stat., 6:4 (2018), 533–581 | DOI | MR | Zbl
[20] A. K. Zvonkin, “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, unichtozhayuschee snos”, Matem. sb., 93:1 (1974), 129–149 | Zbl