On extension of functions from countable subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three intermediate class of spaces $\mathscr{R}_1\subset \mathscr{R}_2\subset \mathscr{R}_3$ between the classes of $F$- and $\beta\omega$-spaces are considered. The $\mathscr{R}_1$- and $\mathscr{R}_3$-spaces are characterized in terms of the extension of functions. It is proved that the classes of $\mathscr{R}_1$-, $\mathscr{R}_2$-, $\mathscr{R}_3$-, and $\beta\omega$-spaces are not preserved by the Stone–Čech compactification.
Keywords: extremally disconnected space, $F$-space, countable subspace, $C^*$-embedded subspace, Stone–Čech compactification.
Mots-clés : $\mathscr{R}_1$-space, $\mathscr{R}_2$-space, $\mathscr{R}_3$-space
@article{FAA_2022_56_4_a3,
     author = {A. Yu. Groznova},
     title = {On extension of functions from countable~subspaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Groznova
TI  - On extension of functions from countable subspaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 35
EP  - 42
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/
LA  - ru
ID  - FAA_2022_56_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Groznova
%T On extension of functions from countable subspaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 35-42
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/
%G ru
%F FAA_2022_56_4_a3
A. Yu. Groznova. On extension of functions from countable subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/

[1] L. Gillman, M. Henriksen, “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl

[2] L. Gillman, M. Jerison, Rings of Continuous Functions, D. van Nostrand Co., Princeton–Toronto–London–New York, 1960 | MR | Zbl

[3] A. Yu. Groznova, O. V. Sipacheva, “Novye svoistva topologicheskikh prostranstv, obobschayuschie ekstremalnuyu nesvyaznost”, Vestn. Mosk. un-ta. Ser. 1 Matem., mekh. (to appear)

[4] K. Kunen, “Large homogeneous compact spaces”, Open Problems in Topology, North-Holland, Amsterdam, 1990, 261–270 | MR

[5] E. Reznichenko, “Homogeneous subspaces of products of extremally disconnected spaces”, Topol. Appl., 284 (2020), 107403 | DOI | MR | Zbl

[6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[7] Z. Frolík, “Maps of extremally disconnected spaces, theory of types, and applications”, General Topology and Its Relations to Modern Analysis and Algebra (Proc. Kanpur topological conference, 1968), Academia (Publishing House of the Czechoslovak Academy of Sciences), Prague, 1971, 133–142 | MR

[8] E. M. Vechtomov, A. V. Mikhalev, V. V. Sidorov, “Polukoltsa nepreryvnykh funktsii”, Fundament. prikl. matem., 21:2 (2016), 53–131

[9] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[10] E. K. van Douwen, “Prime mappings, number of factors and binary operations”, Dissertationes Math., 199 (1981) | MR | Zbl

[11] E. A. Reznichenko, “Psevdokompaktnoe prostranstvo, v kotorom tolko mnozhestva nepolnoi moschnosti ne zamknuty i ne diskretny”, Vestn. Mosk. un-ta. Ser. 1 Matem., mekh., 1989, no. 6, 69–70 | MR | Zbl