On extension of functions from countable subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 35-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Three intermediate class of spaces $\mathscr{R}_1\subset \mathscr{R}_2\subset \mathscr{R}_3$ between the classes of $F$- and $\beta\omega$-spaces are considered. The $\mathscr{R}_1$- and $\mathscr{R}_3$-spaces are characterized in terms of the extension of functions. It is proved that the classes of $\mathscr{R}_1$-, $\mathscr{R}_2$-, $\mathscr{R}_3$-, and $\beta\omega$-spaces are not preserved by the Stone–Čech compactification.
Keywords: extremally disconnected space, $F$-space, countable subspace, $C^*$-embedded subspace, Stone–Čech compactification.
Mots-clés : $\mathscr{R}_1$-space, $\mathscr{R}_2$-space, $\mathscr{R}_3$-space
@article{FAA_2022_56_4_a3,
     author = {A. Yu. Groznova},
     title = {On extension of functions from countable~subspaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Groznova
TI  - On extension of functions from countable subspaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 35
EP  - 42
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/
LA  - ru
ID  - FAA_2022_56_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Groznova
%T On extension of functions from countable subspaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 35-42
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/
%G ru
%F FAA_2022_56_4_a3
A. Yu. Groznova. On extension of functions from countable subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 35-42. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a3/