One-dimensional central measures on numberings of ordered sets
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe one-dimensional central measures on numberings (tableaux) of ideals of partially ordered sets (posets). As the main example, we study the poset $\mathbb{Z}_+^d$ and the graph of its finite ideals, multidimensional Young tableaux; for $d=2$, this is the ordinary Young graph. The central measures are stratified by dimension; in the paper we give a complete description of the one-dimensional stratum and prove that every ergodic central measure is uniquely determined by its frequencies. The suggested method, in particular, gives the first purely combinatorial proof of E. Thoma's theorem for one-dimensional central measures different from the Plancherel measure (which is of dimension $2$).
Keywords: posets, ideals, numberings, central measures.
@article{FAA_2022_56_4_a1,
     author = {A. M. Vershik},
     title = {One-dimensional central measures on numberings of ordered sets},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - One-dimensional central measures on numberings of ordered sets
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 17
EP  - 24
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/
LA  - ru
ID  - FAA_2022_56_4_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T One-dimensional central measures on numberings of ordered sets
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 17-24
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/
%G ru
%F FAA_2022_56_4_a1
A. M. Vershik. One-dimensional central measures on numberings of ordered sets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 17-24. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/

[1] A. Vershik, “Sposob zadaniya tsentralnykh i gibsovskikh mer i ergodicheskii metod”, Dokl. RAN, matem., inform., prots. upr., 497 (2021), 7–11 | DOI | Zbl

[2] A. Vershik, F. Petrov, “Central measures of continuous graded graphs: the case of distinct frequencies”, Eur. Math. J. (to appear) | MR

[3] A. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Trudy MIAN, 305 (2019), 71–85 | DOI | Zbl

[4] A. M. Vershik, F. V. Petrov, “Obobschennaya pemma Maksvella–Puankare i mery Uisharta”, Zap. nauch. sem. POMI, 507, 2021, 15–24

[5] A. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl

[6] A. Vershik, S. Kerov, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algoritm”, SIAM J. Alg. Discr. Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[7] C. Kerov, “Differentsialnaya model rosta diagramm Yunga”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 4 (1996), 165–192 | Zbl