Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_4_a1, author = {A. M. Vershik}, title = {One-dimensional central measures on numberings of ordered sets}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {17--24}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/} }
A. M. Vershik. One-dimensional central measures on numberings of ordered sets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 17-24. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a1/
[1] A. Vershik, “Sposob zadaniya tsentralnykh i gibsovskikh mer i ergodicheskii metod”, Dokl. RAN, matem., inform., prots. upr., 497 (2021), 7–11 | DOI | Zbl
[2] A. Vershik, F. Petrov, “Central measures of continuous graded graphs: the case of distinct frequencies”, Eur. Math. J. (to appear) | MR
[3] A. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Trudy MIAN, 305 (2019), 71–85 | DOI | Zbl
[4] A. M. Vershik, F. V. Petrov, “Obobschennaya pemma Maksvella–Puankare i mery Uisharta”, Zap. nauch. sem. POMI, 507, 2021, 15–24
[5] A. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl
[6] A. Vershik, S. Kerov, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algoritm”, SIAM J. Alg. Discr. Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[7] C. Kerov, “Differentsialnaya model rosta diagramm Yunga”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 4 (1996), 165–192 | Zbl