On Poisson semigroup hypercontractivity for higher-dimensional spheres
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 100-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we consider a variant of a question of Mueller and Weissler raised in 1982, thereby complementing a classical result of Beckner on Stein's conjecture and a recent result of Frank and Ivanisvili. More precisely, we show that, for $1$ and $n\geq1$, the Poisson semigroup $e^{-t\sqrt{-\Delta-(n-1)\mathbb{P}}}$ on the $n$-sphere is hypercontractive from $L^p$ to $L^q$ if and only if $e^{-t}\leq\sqrt{(p-1)/(q-1)}$; here $\Delta$ is the Laplace–Beltrami operator on the $n$-sphere and $\mathbb{P}$ is the projection operator onto spherical harmonics of degree $\geq1$.
Keywords: hypercontractivity, higher-dimensional sphere.
Mots-clés : Poisson semigroup
@article{FAA_2022_56_3_a7,
     author = {Yi C. Huang},
     title = {On {Poisson} semigroup hypercontractivity for higher-dimensional spheres},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--103},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a7/}
}
TY  - JOUR
AU  - Yi C. Huang
TI  - On Poisson semigroup hypercontractivity for higher-dimensional spheres
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 100
EP  - 103
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a7/
LA  - ru
ID  - FAA_2022_56_3_a7
ER  - 
%0 Journal Article
%A Yi C. Huang
%T On Poisson semigroup hypercontractivity for higher-dimensional spheres
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 100-103
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a7/
%G ru
%F FAA_2022_56_3_a7
Yi C. Huang. On Poisson semigroup hypercontractivity for higher-dimensional spheres. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 100-103. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a7/

[1] W. Beckner, Proc. Nat. Acad. Sci. U.S.A., 89:11 (1992), 4816–4819 | DOI | MR | Zbl

[2] A. Bonami, Ann. Inst. Fourier, 20:2 (1970), 335–402 | DOI | MR | Zbl

[3] R. L. Frank, P. Ivanisvili, J. Funct. Anal, 281:8 (2021), 109145 | DOI | MR | Zbl

[4] L. Gross, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR

[5] L. Larsson-Cohn, Arkiv Mat., 40:1 (2002), 133–144 | DOI | MR | Zbl

[6] E. H. Lieb, Ann. of Math., 118:2 (1983), 349–374 | DOI | MR | Zbl

[7] C. E. Mueller, F. B. Weissler, J. Funct. Anal., 48:2 (1982), 252–283 | DOI | MR | Zbl

[8] E. Nelson, J. Funct. Anal., 12:2 (1973), 211–227 | DOI | MR | Zbl