Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 93-99

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb R^d;\mathbb C^n)$ we consider a self-adjoint elliptic second-order differential operator $A_\varepsilon$. It is assumed that the coefficients of $A_\varepsilon$ are periodic and depend on $\mathbf x/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-iA_\varepsilon\tau}$ for small $\varepsilon$ and $\tau\in\mathbb R$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ with initial data in a special class. For fixed $\tau$ and $\varepsilon\to 0$, the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ converges in $L_2(\mathbb R^d;\mathbb C^n)$ to the solution of the homogenized problem; the error is of order $O(\varepsilon)$. We obtain approximations for the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ in $L_2(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon^2)$ and in $H^1(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon)$. These approximations involve appropriate correctors. The dependence of errors on $\tau$ is traced.
Keywords: periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.
@article{FAA_2022_56_3_a6,
     author = {T. A. Suslina},
     title = {Homogenization of the {Schr\"odinger-type} equations: operator estimates with correctors},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 93
EP  - 99
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/
LA  - ru
ID  - FAA_2022_56_3_a6
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 93-99
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/
%G ru
%F FAA_2022_56_3_a6
T. A. Suslina. Homogenization of the Schr\"odinger-type equations: operator estimates with correctors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/