Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 93-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb R^d;\mathbb C^n)$ we consider a self-adjoint elliptic second-order differential operator $A_\varepsilon$. It is assumed that the coefficients of $A_\varepsilon$ are periodic and depend on $\mathbf x/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-iA_\varepsilon\tau}$ for small $\varepsilon$ and $\tau\in\mathbb R$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ with initial data in a special class. For fixed $\tau$ and $\varepsilon\to 0$, the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ converges in $L_2(\mathbb R^d;\mathbb C^n)$ to the solution of the homogenized problem; the error is of order $O(\varepsilon)$. We obtain approximations for the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ in $L_2(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon^2)$ and in $H^1(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon)$. These approximations involve appropriate correctors. The dependence of errors on $\tau$ is traced.
Keywords: periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.
@article{FAA_2022_56_3_a6,
     author = {T. A. Suslina},
     title = {Homogenization of the {Schr\"odinger-type} equations: operator estimates with correctors},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 93
EP  - 99
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/
LA  - ru
ID  - FAA_2022_56_3_a6
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 93-99
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/
%G ru
%F FAA_2022_56_3_a6
T. A. Suslina. Homogenization of the Schr\"odinger-type equations: operator estimates with correctors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 93-99. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a6/

[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108

[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104

[3] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130

[4] T. A. Suslina, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[5] T. A. Suslina, Amer. Math. Soc. Transl. Ser. 2, 220 (2007), 201–233 | MR | Zbl

[6] E. S. Vasilevskaya, Algebra i analiz, 21:1 (2009), 3–60 | MR

[7] T. A. Suslina, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[8] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[9] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, UMN, 71:3 (2016), 27–122 | DOI | MR | Zbl

[11] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 20:6 (2008), 30–107

[12] Yu. M. Meshkova, J. Spectr. Theory, 11:2 (2021), 587–660 | DOI | MR | Zbl

[13] T. A. Suslina, J. Math. Anal. Appl., 446:2 (2017), 1466–1523 | DOI | MR | Zbl

[14] M. A. Dorodnyi, Appl. Anal. | DOI | MR

[15] M. A. Dorodnyi, T. A. Suslina, J. Differential Equations, 264:12 (2018), 7463–7522 | DOI | MR | Zbl

[16] M. A. Dorodnyi, T. A. Suslina, Algebra i analiz, 32:4 (2020), 3–136 | MR

[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[18] T. A. Suslina, “Usrednenie uravnenii tipa Shredingera s periodicheskimi koeffitsientami: rezultaty s korrektorami”, POMI preprinty, 2022, 4 http://www.pdmi.ras.ru/preprint/2022/pr2022.html