Criteria for the property (UWE) and the a-Weyl theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the property (UWE) and the a-Weyl theorem for bounded linear operators are studied in terms of the property of topological uniform descent. Sufficient and necessary conditions for a bounded linear operator defined on a Hilbert space to have the property (UWE) and satisfy the a-Weyl theorem are established. In addition, new criteria for the fulfillment of the property (UWE) and the a-Weyl theorem for an operator function are discussed. As a consequence of the main theorem, results on the stability of the property (UWE) and the a-Weyl theorem are obtained.
Keywords: property (UWE), a-Weyl theorem, topological uniform descent.
@article{FAA_2022_56_3_a4,
     author = {Chenhui Sun and Xiaohong Cao},
     title = {Criteria for the property {(UWE)} and the {a-Weyl} theorem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a4/}
}
TY  - JOUR
AU  - Chenhui Sun
AU  - Xiaohong Cao
TI  - Criteria for the property (UWE) and the a-Weyl theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 75
EP  - 87
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a4/
LA  - ru
ID  - FAA_2022_56_3_a4
ER  - 
%0 Journal Article
%A Chenhui Sun
%A Xiaohong Cao
%T Criteria for the property (UWE) and the a-Weyl theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 75-87
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a4/
%G ru
%F FAA_2022_56_3_a4
Chenhui Sun; Xiaohong Cao. Criteria for the property (UWE) and the a-Weyl theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 75-87. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a4/

[1] H. V. Weyl, “Über beschränkte quadratische Formen, deren Differenz vollstetig ist”, Rend. Circ. Mat. Palermo, 27:1 (1909), 373–392 | DOI | Zbl

[2] R. Harte, W. Y. Lee, “Another note on Weyl's theorem”, Trans. Amer. Math. Soc., 349:5 (1997), 2115–2124 | DOI | MR | Zbl

[3] V. Rakoc̆evic̀, “Operators obeying a-Weyl's theorem”, Rev. Roum. Math. Pures Appl., 34:10 (1989), 915–919 | MR | Zbl

[4] V. Rakoc̆evic̀, “On a class of operators”, Mat. Vesnik, 37:4 (1985), 423–426 | MR | Zbl

[5] C. G. Li, S. Zhu, Y. L. Feng, “Weyl's theorem for functions of operators and approximation”, Integral Equations Oper. Theory, 67:4 (2010), 481–497 | DOI | MR | Zbl

[6] I. J. An, Y. M. Han, “Weyl's theorem for algebraically quasi-class A operators”, Integral Equations Operator Theory, 62:1 (2008), 1–10 | DOI | MR | Zbl

[7] X. H. Cao, M. Z. Guo, B. Meng, “Weyl spectra and Weyl's theorem”, J. Math. Anal. Appl., 288:2 (2003), 758–767 | DOI | MR | Zbl

[8] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966 | MR | Zbl

[9] M. Berkani, M. Kachad, “New Browder and Weyl type theorems”, Bull. Korean Math. Soc., 52:2 (2015), 439–452 | DOI | MR | Zbl

[10] S. Grabiner, “Uniform ascent and descent of bounded operaters”, J. Math. Soc. Japan, 34:2 (1982), 317–337 | DOI | MR

[11] H. Radjavi, P. Rosenthal, Invariant Subspaces, Dover Publications, Mineola, 2003 | MR | Zbl

[12] S. Zhu, C. G. Li, T. T. Zhou, “Weyl type theorems for functions of operators”, Glasg. Math. J., 54:3 (2012), 493–505 | DOI | MR | Zbl