Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_3_a3, author = {N. A. Safonkin}, title = {Semifinite harmonic functions on the zigzag graph}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {52--74}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/} }
N. A. Safonkin. Semifinite harmonic functions on the zigzag graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 52-74. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/
[1] R. P. Boyer, “Infinite traces of {AF}-algebras and characters of U$(\infty)$”, J. Operator Theory, 9:2 (1983), 205–236 | MR | Zbl
[2] R. P. Boyer, “Characters of the infinite symplectic group—a Riesz ring approach”, J. Funct. Anal., 70:2 (1987), 357–387 | DOI | MR | Zbl
[3] O. Bratteli, “Inductive limits of finite dimensional $C^*$-algebras”, Trans. Amer. Math. Soc., 171 (1972), 195–234 | MR | Zbl
[4] I. M. Gessel, “Multipartite $P$-partitions and inner products of skew Schur functions”, Combinatorics and algebra (Boulder, Colo., 1983), Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984, 289–317 | DOI | MR
[5] A. Gnedin, G. Olshanski, “Coherent Permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Int. Math. Res. Not., 2006, 51968 | MR | Zbl
[6] S. V. Kerov, “Kombinatornye primery v teorii AF-algebr”, Differentsialnaya geometriya, gruppy Li i mekhanika, v. 10, Zap. nauch. sem. LOMI, 172, 1989, 55–67
[7] A. M. Vershik, S. V. Kerov, “$K$-funktor (gruppa Grotendika) beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. sem. LOMI, 123, 1983, 126–251
[8] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Nov. dostizh., 26, 1985, 3–56 | Zbl
[9] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the $K_0$-functor theory of AF-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math, 7, Gordon and Breach, New York, 1990, 36–114 | MR
[10] K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions, SpringerBriefs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[11] N. A. Safonkin, “Semifinite harmonic functions on branching graphs”, Zap. nauchn. sem. POMI, 507, 2021, 114–139 ; arXiv: 2108.07850 | MR | Zbl
[12] N. Safonkin, Semifinite harmonic functions on the zigzag graph, arXiv: 2110.01508
[13] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2009
[14] Ş. Strătilă, D. Voiculescu, Representations of AF-Algebras and of the Group $U(\infty)$, Lecture Notes in Mathematics, 486, Springer-Verlag, Berlin–New York, 1975 | MR
[15] P. Tarrago, “Zigzag diagrams and Martin boundary”, Ann. Probab., 46:5 (2018), 2562–2620 | DOI | MR | Zbl
[16] A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. thesis, University of Pennsylvania, 1981 https://repository.upenn.edu/dissertations/AAI8127086/ | MR