Semifinite harmonic functions on the zigzag graph
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 52-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We study semifinite harmonic functions on the zigzag graph, which corresponds to the Pieri rule for the fundamental quasisymmetric functions $\{F_{\lambda}\}$. The main problem, which we solve here, is to classify the indecomposable semifinite harmonic functions on this graph. We show that these functions are in a natural bijective correspondence with some combinatorial data, the so-called semifinite zigzag growth models. Furthermore, we describe an explicit construction that produces a semifinite indecomposable harmonic function from every semifinite zigzag growth model. We also establish a semifinite analogue of the Vershik–Kerov ring theorem.
Keywords: fundamental quasisymmetric functions, zigzags, branching graphs, AF-algebras, semifinite traces.
Mots-clés : compositions
@article{FAA_2022_56_3_a3,
     author = {N. A. Safonkin},
     title = {Semifinite harmonic functions on the zigzag graph},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--74},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/}
}
TY  - JOUR
AU  - N. A. Safonkin
TI  - Semifinite harmonic functions on the zigzag graph
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 52
EP  - 74
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/
LA  - ru
ID  - FAA_2022_56_3_a3
ER  - 
%0 Journal Article
%A N. A. Safonkin
%T Semifinite harmonic functions on the zigzag graph
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 52-74
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/
%G ru
%F FAA_2022_56_3_a3
N. A. Safonkin. Semifinite harmonic functions on the zigzag graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 52-74. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/