Semifinite harmonic functions on the zigzag graph
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 52-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study semifinite harmonic functions on the zigzag graph, which corresponds to the Pieri rule for the fundamental quasisymmetric functions $\{F_{\lambda}\}$. The main problem, which we solve here, is to classify the indecomposable semifinite harmonic functions on this graph. We show that these functions are in a natural bijective correspondence with some combinatorial data, the so-called semifinite zigzag growth models. Furthermore, we describe an explicit construction that produces a semifinite indecomposable harmonic function from every semifinite zigzag growth model. We also establish a semifinite analogue of the Vershik–Kerov ring theorem.
Keywords: fundamental quasisymmetric functions, zigzags, branching graphs, AF-algebras, semifinite traces.
Mots-clés : compositions
@article{FAA_2022_56_3_a3,
     author = {N. A. Safonkin},
     title = {Semifinite harmonic functions on the zigzag graph},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--74},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/}
}
TY  - JOUR
AU  - N. A. Safonkin
TI  - Semifinite harmonic functions on the zigzag graph
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 52
EP  - 74
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/
LA  - ru
ID  - FAA_2022_56_3_a3
ER  - 
%0 Journal Article
%A N. A. Safonkin
%T Semifinite harmonic functions on the zigzag graph
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 52-74
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/
%G ru
%F FAA_2022_56_3_a3
N. A. Safonkin. Semifinite harmonic functions on the zigzag graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 52-74. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a3/

[1] R. P. Boyer, “Infinite traces of {AF}-algebras and characters of U$(\infty)$”, J. Operator Theory, 9:2 (1983), 205–236 | MR | Zbl

[2] R. P. Boyer, “Characters of the infinite symplectic group—a Riesz ring approach”, J. Funct. Anal., 70:2 (1987), 357–387 | DOI | MR | Zbl

[3] O. Bratteli, “Inductive limits of finite dimensional $C^*$-algebras”, Trans. Amer. Math. Soc., 171 (1972), 195–234 | MR | Zbl

[4] I. M. Gessel, “Multipartite $P$-partitions and inner products of skew Schur functions”, Combinatorics and algebra (Boulder, Colo., 1983), Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984, 289–317 | DOI | MR

[5] A. Gnedin, G. Olshanski, “Coherent Permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Int. Math. Res. Not., 2006, 51968 | MR | Zbl

[6] S. V. Kerov, “Kombinatornye primery v teorii AF-algebr”, Differentsialnaya geometriya, gruppy Li i mekhanika, v. 10, Zap. nauch. sem. LOMI, 172, 1989, 55–67

[7] A. M. Vershik, S. V. Kerov, “$K$-funktor (gruppa Grotendika) beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. sem. LOMI, 123, 1983, 126–251

[8] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Nov. dostizh., 26, 1985, 3–56 | Zbl

[9] S. Kerov, A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions (with the elements of the $K_0$-functor theory of AF-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math, 7, Gordon and Breach, New York, 1990, 36–114 | MR

[10] K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions, SpringerBriefs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl

[11] N. A. Safonkin, “Semifinite harmonic functions on branching graphs”, Zap. nauchn. sem. POMI, 507, 2021, 114–139 ; arXiv: 2108.07850 | MR | Zbl

[12] N. Safonkin, Semifinite harmonic functions on the zigzag graph, arXiv: 2110.01508

[13] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2009

[14] Ş. Strătilă, D. Voiculescu, Representations of AF-Algebras and of the Group $U(\infty)$, Lecture Notes in Mathematics, 486, Springer-Verlag, Berlin–New York, 1975 | MR

[15] P. Tarrago, “Zigzag diagrams and Martin boundary”, Ann. Probab., 46:5 (2018), 2562–2620 | DOI | MR | Zbl

[16] A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. thesis, University of Pennsylvania, 1981 https://repository.upenn.edu/dissertations/AAI8127086/ | MR