Parametric Korteweg--de Vries hierarchy and hyperelliptic sigma functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 16-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a parametric Korteweg–de Vries hierarchy is defined that depends on an infinite set of graded parameters $a = (a_4,a_6,\dots)$. It is shown that, for any genus $g$, the Klein hyperelliptic function $\wp_{1,1}(t,\lambda)$ defined on the basis of the multidimensional sigma function $\sigma(t, \lambda)$, where $t = (t_1, t_3,\dots, t_{2g-1})$ and $\lambda = (\lambda_4, \lambda_6,\dots, \lambda_{4 g + 2})$, specifies a solution to this hierarchy in which the parameters $a$ are given as polynomials in the parameters $\lambda$ of the sigma function. The proof uses results concerning the family of operators introduced by V. M. Buchstaber and S. Yu. Shorina. This family consists of $g$ third-order differential operators in $g$ variables. Such families are defined for all $g \geqslant 1$, the operators in each of them pairwise commute with each other and also commute with the Schrödinger operator. In this paper a relationship between these families and the Korteweg–de Vries parametric hierarchy is described. A similar infinite family of third-order operators on an infinite set of variables is constructed. The results obtained are extended to the case of such a family.
Keywords: canonical Korteweg–de Vries hierarchy, parametric Korteweg–de Vries hierarchy, hyperelliptic functions, multidimensional sigma function, Buchstaber–Shorina operators, Buchstaber–\break Shorina polynomial differential operators, polynomial parametric Korteweg–de Vries hierarchy.
@article{FAA_2022_56_3_a1,
     author = {E. Yu. Bunkova and V. M. Bukhshtaber},
     title = {Parametric {Korteweg--de} {Vries} hierarchy and hyperelliptic sigma functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--38},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a1/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
AU  - V. M. Bukhshtaber
TI  - Parametric Korteweg--de Vries hierarchy and hyperelliptic sigma functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 16
EP  - 38
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a1/
LA  - ru
ID  - FAA_2022_56_3_a1
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%A V. M. Bukhshtaber
%T Parametric Korteweg--de Vries hierarchy and hyperelliptic sigma functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 16-38
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a1/
%G ru
%F FAA_2022_56_3_a1
E. Yu. Bunkova; V. M. Bukhshtaber. Parametric Korteweg--de Vries hierarchy and hyperelliptic sigma functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 16-38. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a1/