Taylor spectrum for modules over Lie algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize the notion of the Taylor spectrum to modules over an arbitrary Lie algebra and study it for finite-dimensional modules. We show that the spectrum can be described as the set of simple submodules in the case of nilpotent and semisimple Lie algebras. We also show that this result does not hold for solvable Lie algebras and obtain a precise description of the spectrum in the case of Borel subalgebras of semisimple Lie algebras.
Keywords: Taylor spectrum, Lie algebra cohomology.
@article{FAA_2022_56_3_a0,
     author = {B. I. Bilich},
     title = {Taylor spectrum for modules over {Lie} algebras},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/}
}
TY  - JOUR
AU  - B. I. Bilich
TI  - Taylor spectrum for modules over Lie algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 3
EP  - 15
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/
LA  - ru
ID  - FAA_2022_56_3_a0
ER  - 
%0 Journal Article
%A B. I. Bilich
%T Taylor spectrum for modules over Lie algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 3-15
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/
%G ru
%F FAA_2022_56_3_a0
B. I. Bilich. Taylor spectrum for modules over Lie algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/

[1] D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Operator Theory: Advances and Applications, 120, Birkhäuser Verlag, Basel, 2001 | MR | Zbl

[2] B. Bilich, Homology of solvable (nilpotent) Lie algebras https://mathoverflow.net/q/330854

[3] E. Boasso, A. Larotonda, “A spectral theory for solvable Lie algebras of operators”, Pacific J. Math., 158:1 (1993), 15–22 | DOI | MR | Zbl

[4] N. Burbaki, Gruppy i algebry Li bookinfo gl. VII, VIII, Mir, M., 1978

[5] L. Cagliero, P. Tirao, “Total cohomology of solvable Lie algebras and linear deformations”, Trans. Amer. Math. Soc., 368:5 (2016), 3341–3358 | DOI | MR | Zbl

[6] V. E. Coll, Jr., M. Gerstenhaber, “Cohomology of Lie semidirect products and poset algebras”, J. Lie Theory, 26:1 (2016), 79–95 | MR | Zbl

[7] A. A. Dosiev, “Ultraspektry predstavleniya banakhovoi algebry Li”, Funkts. analiz i ego pril., 35:3 (2001), 80–84 | DOI | MR | Zbl

[8] A. A. Dosiev, “Algebry stepennykh ryadov ot elementov algebry Li i spektry Slodkovskogo”, Zap. nauchn. sem. POMI, 290, 2002, 72–101

[9] A. Dosiev, “Projection property of spectra for solvable Lie algebra representations”, Trans. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 23:1, Math. Mech. (2003), 27–32 | MR | Zbl

[10] A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216 | MR | Zbl

[11] A. S. Fainshtein, “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29:1 (1993), 3–27 | MR | Zbl

[12] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathematiques, 2, CEDIC, Paris, 1980 | MR | Zbl

[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Second printing, revised, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl

[14] A. W. Knapp, Lie Groups, Lie Algebras, and Cohomology, Mathematical Notes, 34, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl

[15] D. V. Millionschikov, “Kogomologii razreshimykh algebr Li i solvmnogoobraziya”, Matem. zametki, 77:1 (2005), 67–69 | DOI | MR

[16] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Funct. Anal., 6 (1970), 172–191 | DOI | MR | Zbl

[17] J. L. Taylor, “The analytic-functional calculus for several commuting operators”, Acta Math., 125 (1970), 1–38 | DOI | MR | Zbl

[18] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Adv. Math., 9 (1972), 183–252 | DOI | MR | Zbl

[19] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | MR | Zbl