Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_3_a0, author = {B. I. Bilich}, title = {Taylor spectrum for modules over {Lie} algebras}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--15}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/} }
B. I. Bilich. Taylor spectrum for modules over Lie algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a0/
[1] D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Operator Theory: Advances and Applications, 120, Birkhäuser Verlag, Basel, 2001 | MR | Zbl
[2] B. Bilich, Homology of solvable (nilpotent) Lie algebras https://mathoverflow.net/q/330854
[3] E. Boasso, A. Larotonda, “A spectral theory for solvable Lie algebras of operators”, Pacific J. Math., 158:1 (1993), 15–22 | DOI | MR | Zbl
[4] N. Burbaki, Gruppy i algebry Li bookinfo gl. VII, VIII, Mir, M., 1978
[5] L. Cagliero, P. Tirao, “Total cohomology of solvable Lie algebras and linear deformations”, Trans. Amer. Math. Soc., 368:5 (2016), 3341–3358 | DOI | MR | Zbl
[6] V. E. Coll, Jr., M. Gerstenhaber, “Cohomology of Lie semidirect products and poset algebras”, J. Lie Theory, 26:1 (2016), 79–95 | MR | Zbl
[7] A. A. Dosiev, “Ultraspektry predstavleniya banakhovoi algebry Li”, Funkts. analiz i ego pril., 35:3 (2001), 80–84 | DOI | MR | Zbl
[8] A. A. Dosiev, “Algebry stepennykh ryadov ot elementov algebry Li i spektry Slodkovskogo”, Zap. nauchn. sem. POMI, 290, 2002, 72–101
[9] A. Dosiev, “Projection property of spectra for solvable Lie algebra representations”, Trans. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 23:1, Math. Mech. (2003), 27–32 | MR | Zbl
[10] A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216 | MR | Zbl
[11] A. S. Fainshtein, “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29:1 (1993), 3–27 | MR | Zbl
[12] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathematiques, 2, CEDIC, Paris, 1980 | MR | Zbl
[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Second printing, revised, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl
[14] A. W. Knapp, Lie Groups, Lie Algebras, and Cohomology, Mathematical Notes, 34, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl
[15] D. V. Millionschikov, “Kogomologii razreshimykh algebr Li i solvmnogoobraziya”, Matem. zametki, 77:1 (2005), 67–69 | DOI | MR
[16] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Funct. Anal., 6 (1970), 172–191 | DOI | MR | Zbl
[17] J. L. Taylor, “The analytic-functional calculus for several commuting operators”, Acta Math., 125 (1970), 1–38 | DOI | MR | Zbl
[18] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Adv. Math., 9 (1972), 183–252 | DOI | MR | Zbl
[19] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | MR | Zbl