On the Arens Homomorphism
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 82-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a unital $f$-module over an $f$-algebra $A$. With the help of Arens extension theory, a $(A^{\sim})_{n}^{\sim}$ module structure on $E^{\sim}$ can be defined. The paper deals mainly with properties of the Arens homomorphism $\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname{Orth}(E^{\sim})$, which is defined by the $(A^{\sim})_{n}^{\sim}$ module structure on $E^{\sim}$. Necessary and sufficient conditions for an $A$ submodule of $E$ to be an order ideal are obtained.
Keywords: Riesz space, orthomorphism
Mots-clés : $f$-module, Arens homomorphism.
@article{FAA_2022_56_2_a7,
     author = {B. Turan and M. Aslanta\c{s}},
     title = {On the {Arens} {Homomorphism}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/}
}
TY  - JOUR
AU  - B. Turan
AU  - M. Aslantaş
TI  - On the Arens Homomorphism
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 82
EP  - 91
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/
LA  - ru
ID  - FAA_2022_56_2_a7
ER  - 
%0 Journal Article
%A B. Turan
%A M. Aslantaş
%T On the Arens Homomorphism
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 82-91
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/
%G ru
%F FAA_2022_56_2_a7
B. Turan; M. Aslantaş. On the Arens Homomorphism. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 82-91. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/

[1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, London, 1985 | MR | Zbl

[2] C. D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, London, 1978 | MR | Zbl

[3] Ş. Alpay, B. Turan, “On $f$-modules”, Rev. Roumaine Math. Pur. App., 40 (1995), 233–241 | MR | Zbl

[4] K. Boulabiar, G. Buskes, R. Page, “On some properties of bilinear maps of order bounded variation”, Positivity, 9:3 (2005), 401–414 | DOI | MR | Zbl

[5] G. Buskes, A. van Rooij, “Bounded variation and tensor product of Banach lattices”, Positivity, 7:1–2 (2003), 47–59 | DOI | MR | Zbl

[6] C. B. Huijsmans, B. de Pagter, “The order bidual of lattice ordered algebras”, J. Func. Anal., 59:1 (1984), 41–64 | DOI | MR | Zbl

[7] C. B. Huijsmans, B. de Pagter, “Subalgebras and Riesz subspaces of an $f$-algebra”, Proc. London Math. Soc., 48:1 (1984), 161–174 | DOI | MR | Zbl

[8] C. B. Huijsmans, B. de Pagter, “Ideal theory in $f$-algebras”, Trans. Amer. Math. Soc., 269 (1982), 225–245 | MR | Zbl

[9] W. A. J. Luxemburg, A. C. Zaanen, Riesz Space I, North Holland, Amsterdam, 1971 | MR

[10] W. A. J. Luxembur, “Ordered Algebraic Structures in Analysis”, Ordered Algebraic Structures, Kluwer Acad. Publ., Dordrecht, 1989, 131–142 | DOI | MR

[11] M. Orhon, “The ideal center of the dual of a Banach lattice”, Positivity, 14:4 (2010), 841–847 | DOI | MR | Zbl

[12] A. P. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, Moskva, 1967 | MR

[13] B. Turan, “On $f$-linearity and $f$-orthomorphisms”, Positivity, 4:3 (2000), 293–301 | DOI | MR | Zbl

[14] A. W. Wickstead, “Extremal structure of cones of operators”, Quart. J. Math. Oxford. Ser., 32 (1981), 239–253 | DOI | MR | Zbl

[15] A. C. Zaanen, Riesz Spaces II, North Holland, Amsterdam, 1983 | MR