On the Arens Homomorphism
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 82-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a unital $f$-module over an $f$-algebra $A$. With the help of Arens extension theory, a $(A^{\sim})_{n}^{\sim}$ module
structure on $E^{\sim}$ can be defined. The paper deals mainly with properties of
the Arens homomorphism
$\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname{Orth}(E^{\sim})$, which is defined by
the $(A^{\sim})_{n}^{\sim}$ module
structure on $E^{\sim}$. Necessary and sufficient conditions
for an $A$ submodule of
$E$ to be an order ideal are obtained.
Keywords:
Riesz space, orthomorphism
Mots-clés : $f$-module, Arens homomorphism.
Mots-clés : $f$-module, Arens homomorphism.
@article{FAA_2022_56_2_a7,
author = {B. Turan and M. Aslanta\c{s}},
title = {On the {Arens} {Homomorphism}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--91},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/}
}
B. Turan; M. Aslantaş. On the Arens Homomorphism. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 82-91. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a7/