Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In is proved that the free topological vector space $B(X)$ over the field $\mathbb{F}_2=\{0,1\}$ generated by a stratifiable space $X$ is stratifiable, and therefore, for any closed subspace $F\subset B(X)$ (in particular, for $F=X$) and any locally convex space $E$, there exists a linear extension operator $C(F,E)\to C(B(X),E)$ between spaces of continuous maps.
Keywords: extension operator, Dugundji–Borges theorem, topological vector space over $\mathbb{F}_2$, free Boolean topological group.
Mots-clés : stratifiable space
@article{FAA_2022_56_2_a5,
     author = {O. V. Sipacheva and A. A. Solonkov},
     title = {Extension {Operator} for {Subspaces} of {Vector} {Spaces} over the {Field} $\mathbb{F}_2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a5/}
}
TY  - JOUR
AU  - O. V. Sipacheva
AU  - A. A. Solonkov
TI  - Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 64
EP  - 74
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a5/
LA  - ru
ID  - FAA_2022_56_2_a5
ER  - 
%0 Journal Article
%A O. V. Sipacheva
%A A. A. Solonkov
%T Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 64-74
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a5/
%G ru
%F FAA_2022_56_2_a5
O. V. Sipacheva; A. A. Solonkov. Extension Operator for Subspaces of Vector Spaces over the Field $\mathbb{F}_2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 64-74. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a5/

[1] J. Dugundji, “An extension of Tietze's theorem”, Pacific J. Math., 1 (1951), 353–367 | DOI | MR | Zbl

[2] C. J. R. Borges, “On stratifiable spaces”, Pacific J. Math., 17:1 (1966), 1–16 | DOI | MR | Zbl

[3] V. V. Fedorchuk, A. Ch. Chigogidze, Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992

[4] J. G. Ceder, “Some generalizations of metric spaces”, Pacific J. Math., 11 (1961), 105–125 | DOI | MR | Zbl

[5] G. Gruenhage, “Generalized metric spaces”, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423–501 | DOI | MR

[6] S. A. Shkarin, “On stratifiable locally convex spaces”, Russ. J. Math. Phys., 6:4 (1999), 435–460 | MR | Zbl

[7] S. A. Shkarin, “Teorema Peano neverna v beskonechnomernykh $F'$-prostranstvakh”, Matem. zametki, 62:1 (1997), 128–137 | DOI | MR | Zbl

[8] O. V. Sipacheva, “Ob odnom klasse svobodnykh lokalno vypuklykh prostranstv”, Matem. sb., 194:3 (2003), 25–52 | DOI | MR | Zbl

[9] O. V. Sipacheva, “Free Boolean topological groups”, Axioms, 4:4 (2015), 492–517 | DOI | Zbl

[10] R. W. Heath, R. E. Hodel, “Characterizations of $\sigma$-spaces”, Fund. Math., 77:3 (1973), 271–275 | DOI | MR | Zbl

[11] T. Przymusiński, “Collectionwise normality and extensions of continuous functions”, Fund. Math., 98:1 (1978), 75–81 | DOI | MR | Zbl

[12] V. V. Uspenskii, “Svobodnye topologicheskie gruppy metrizuemykh prostranstv”, Izv. AN SSSR. Ser. mat., 54:6 (1990), 1295–1319