Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_2_a4, author = {D. L. Rogava}, title = {Approximation of {Operator} {Semigroups} {Using} {Linear-Fractional} {Operator} {Functions} and {Weighted} {Averages}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {47--63}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a4/} }
TY - JOUR AU - D. L. Rogava TI - Approximation of Operator Semigroups Using Linear-Fractional Operator Functions and Weighted Averages JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 47 EP - 63 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a4/ LA - ru ID - FAA_2022_56_2_a4 ER -
D. L. Rogava. Approximation of Operator Semigroups Using Linear-Fractional Operator Functions and Weighted Averages. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 47-63. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a4/
[1] H. Trotter, “On the product of semi-group of operators”, Proc. Amer. Mat. Soc., 10 (1959), 545–551 | DOI | MR | Zbl
[2] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2 (1968), 238–242 | DOI | MR | Zbl
[3] P. R. Chernoff, “Semigroup product formulas and addition of unbounded operators”, Bull. Amer. Mat. Soc., 76 (1970), 395–398 | DOI | MR | Zbl
[4] Z. G. Gegechkori, J. L. Rogava, M. A. Tsiklauri, “High degree precision decomposition method for the evolution problem with an operator under a split form”, M2AN Math. Model. Numer. Anal., 36:4 (2002), 693–704 | DOI | MR | Zbl
[5] Z. G. Gegechkori, J. L. Rogava, M. A. Tsiklauri, “The fourth order accuracy decomposition scheme for an evolution problem”, M2AN Math. Model. Numer. Anal., 38:4 (2004), 707–722 | DOI | MR | Zbl
[6] Dzh. L. Rogava, “O pogreshnosti formul tipa Trottera v sluchae samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 27:3 (1993), 84–86 | MR | Zbl
[7] T. Ichinose, H. Tamura, “The norm convergence of the Trotter–Kato product formula with error bound”, Comm. Math. Phys., 217:3 (2001), 489–502 | DOI | MR | Zbl
[8] T. Ichinose, Hideo Tamura, Hiroshi Tamura, V. A. Zagrebnov, “Note on the paper “The norm convergence of the Trotter–Kato product formula with error bound” by T. Ichinose and H. Tamura [Comm. Math. Phys., 217:3 (2001), 489–502]”, Comm. Math. Phys., 221:3 (2001), 499–510 | DOI | MR | Zbl
[9] H. Neidhardt, V. A. Zagrebnov, “On error estimates for the Trotter–Kato product formula”, Lett. Math. Phys., 44:3 (1998), 169–186 | DOI | MR | Zbl
[10] T. Ichinose, H. Neidhardt, V. A. Zagrebnov, “Trotter–Kato product formula and fractional powers of self-adjoint generators”, J. Funct. Anal., 207:1 (2004), 33–57 | DOI | MR | Zbl
[11] V. Cachia, V. A. Zagrebnov, “Operator-norm approximation of semigroups by quasi-sectorial contractions”, J. Funct. Anal., 180:1 (2001), 176–194 | DOI | MR | Zbl
[12] A. Gomilko, Yu. Tomilov, “On convergence rates in approximation theory for operator semigroups”, J. Funct. Anal., 266:5 (2014), 3040–3082 | DOI | MR | Zbl
[13] Yu. Arlinskii, V. Zagrebnov, “Numerical range and quasi-sectorial contractions”, J. Math. Anal. Appl., 366:1 (2010), 33–43 | DOI | MR | Zbl
[14] V. Bentkus, V. Paulauskas, “Optimal error estimates in operator-norm approximations of semigroups”, Lett. Math. Phys., 68:3 (2004), 131–138 | DOI | MR | Zbl
[15] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR
[16] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[17] N. Danford, Dzh. Shvarts, Lineinye operatory, Ch. I, IL, M., 1962
[18] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR