$A$-Ergodicity of Convolution Operators in Group Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 39-46
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a locally compact Abelian group with dual group $\Gamma $,
let $\mu$ be a power bounded measure on
$G$, and let $A=[ a_{n,k}]_{n,k=0}^{\infty}$ be a strongly regular matrix. We show that the sequence
$\{\sum_{k=0}^{\infty}a_{n,k}\mu^{k}\ast f\}_{n=0}^{\infty}$ converges in the $L^{1}$-norm
for every $f\in L^{1}(G)$
if and only if $\mathcal{F}_{\mu}:=\{\gamma \in \Gamma:\widehat{\mu}(\gamma) =1\} $ is clopen in $\Gamma $,
where $\widehat{\mu}$ is the Fourier–Stieltjes transform of $\mu $. If $\mu $ is a probability measure, then
$\mathcal{F}_{\mu}$ is clopen in $\Gamma $ if and only if the closed subgroup generated by the support of $\mu $
is compact.
Keywords:
locally compact Abelian group, probability measure, regular matrix,
mean ergodic theorem
Mots-clés : convergence.
Mots-clés : convergence.
@article{FAA_2022_56_2_a3,
author = {H. S. Mustafaev and A. Huseynli},
title = {$A${-Ergodicity} of {Convolution} {Operators} in {Group} {Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {39--46},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/}
}
H. S. Mustafaev; A. Huseynli. $A$-Ergodicity of Convolution Operators in Group Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/