$A$-Ergodicity of Convolution Operators in Group Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a locally compact Abelian group with dual group $\Gamma $, let $\mu$ be a power bounded measure on $G$, and let $A=[ a_{n,k}]_{n,k=0}^{\infty}$ be a strongly regular matrix. We show that the sequence $\{\sum_{k=0}^{\infty}a_{n,k}\mu^{k}\ast f\}_{n=0}^{\infty}$ converges in the $L^{1}$-norm for every $f\in L^{1}(G)$ if and only if $\mathcal{F}_{\mu}:=\{\gamma \in \Gamma:\widehat{\mu}(\gamma) =1\} $ is clopen in $\Gamma $, where $\widehat{\mu}$ is the Fourier–Stieltjes transform of $\mu $. If $\mu $ is a probability measure, then $\mathcal{F}_{\mu}$ is clopen in $\Gamma $ if and only if the closed subgroup generated by the support of $\mu $ is compact.
Keywords: locally compact Abelian group, probability measure, regular matrix, mean ergodic theorem
Mots-clés : convergence.
@article{FAA_2022_56_2_a3,
     author = {H. S. Mustafaev and A. Huseynli},
     title = {$A${-Ergodicity} of {Convolution} {Operators} in {Group} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/}
}
TY  - JOUR
AU  - H. S. Mustafaev
AU  - A. Huseynli
TI  - $A$-Ergodicity of Convolution Operators in Group Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 39
EP  - 46
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/
LA  - ru
ID  - FAA_2022_56_2_a3
ER  - 
%0 Journal Article
%A H. S. Mustafaev
%A A. Huseynli
%T $A$-Ergodicity of Convolution Operators in Group Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 39-46
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/
%G ru
%F FAA_2022_56_2_a3
H. S. Mustafaev; A. Huseynli. $A$-Ergodicity of Convolution Operators in Group Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/

[1] L. W. Cohen, “On the mean ergodic theorem”, Ann. of Math., 41 (1940), 505–509 | DOI | MR

[2] R. Larsen, Banach Algebras. An Introduction, Marcel Dekker, New York, 1973 | MR | Zbl

[3] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl

[4] H. Mustafayev, “Mean ergodic theorems for multipliers on Banach algebras”, J. Fourier Anal. Appl., 25:2 (2019), 393–426 | DOI | MR | Zbl

[5] H. Mustafayev, H. Şevli, “Mean ergodic theorems for power bounded measures”, J. Math. Anal. Appl., 500:1 (2021), 125090 | DOI | MR | Zbl

[6] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18 (1932), 70–82 | DOI

[7] G. M. Petersen, Regular Matrix Transformations, McGraw-Hill, New York, 1966 | MR | Zbl

[8] T. Yoshimoto, “Ergodic theorems and summability methods”, Quart. J. Math., Oxford Ser., 38:3 (1987), 367–379 | DOI | MR | Zbl

[9] K. Yosida, “Mean ergodic theorem in Banach space”, Proc. Imp. Acad. Tokyo, 14:8 (1938), 292–294 | MR