Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_2_a3, author = {H. S. Mustafaev and A. Huseynli}, title = {$A${-Ergodicity} of {Convolution} {Operators} in {Group} {Algebras}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {39--46}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/} }
H. S. Mustafaev; A. Huseynli. $A$-Ergodicity of Convolution Operators in Group Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a3/
[1] L. W. Cohen, “On the mean ergodic theorem”, Ann. of Math., 41 (1940), 505–509 | DOI | MR
[2] R. Larsen, Banach Algebras. An Introduction, Marcel Dekker, New York, 1973 | MR | Zbl
[3] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl
[4] H. Mustafayev, “Mean ergodic theorems for multipliers on Banach algebras”, J. Fourier Anal. Appl., 25:2 (2019), 393–426 | DOI | MR | Zbl
[5] H. Mustafayev, H. Şevli, “Mean ergodic theorems for power bounded measures”, J. Math. Anal. Appl., 500:1 (2021), 125090 | DOI | MR | Zbl
[6] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18 (1932), 70–82 | DOI
[7] G. M. Petersen, Regular Matrix Transformations, McGraw-Hill, New York, 1966 | MR | Zbl
[8] T. Yoshimoto, “Ergodic theorems and summability methods”, Quart. J. Math., Oxford Ser., 38:3 (1987), 367–379 | DOI | MR | Zbl
[9] K. Yosida, “Mean ergodic theorem in Banach space”, Proc. Imp. Acad. Tokyo, 14:8 (1938), 292–294 | MR