Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 10-28

Voir la notice de l'article provenant de la source Math-Net.Ru

According to a known characterization, a function $f$ belongs to the Sobolev space $W^{p,1}(\mathbb{R}^n)$ of functions contained in $L^p(\mathbb{R}^n)$ along with their generalized first-order derivatives precisely when there is a function $g\in L^p(\mathbb{R}^n)$ such that $$ |f(x)-f(y)|\le |x-y|(g(x)+g(y)) $$ for almost all pairs $(x,y)$. An analogue of this estimate is also known for functions from the Gaussian Sobolev space $W^{p,1}(\gamma)$ in infinite dimension. In this paper the converse is proved; moreover, it is shown that the above inequality implies membership in appropriate Sobolev spaces for a large class of measures on finite-dimensional and infinite-dimensional spaces.
Keywords: Sobolev space, Gaussian measure, differentiable measure, quasi-invariant measure.
@article{FAA_2022_56_2_a1,
     author = {V. I. Bogachev},
     title = {Pointwise {Conditions} for {Membership} of {Functions} in {Weighted} {Sobolev} {Classes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {10--28},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 10
EP  - 28
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a1/
LA  - ru
ID  - FAA_2022_56_2_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 10-28
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a1/
%G ru
%F FAA_2022_56_2_a1
V. I. Bogachev. Pointwise Conditions for Membership of Functions in Weighted Sobolev Classes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 10-28. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a1/