Polynomials in the differentiation operator and formulas for the sums of some converging series
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 81-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P_n(x)$ be any polynomial of degree $n\geq 2$ with real coefficients such that $P_n(k)\ne 0$
for $k\in\mathbb{Z}$. In the paper, in particular, the sum of a series of the form
$\sum_{k=-\infty}^{+\infty}1/P_n(k)$ is expressed as the value at $(0,0)$ of the Green function
of the self-adjoint problem
generated by the differential expression $l_n[y]=P_n(i\,d/dx) y$ and the boundary
conditions $y^{(j)}(0)=y^{(j)}(2\pi)$ ($j=0,1,\dots,n-1$). Thus, such a sum is explicitly expressed
in terms of the value of an easy-to-construct elementary function.
These formulas, obviously, also apply to sums of the form $\sum_{k=0}^{+\infty}1/P_n(k^2)$,
while it is well known that similar general formulas for the sum
$\sum_{k=0}^{+\infty}1/P_n(k)$ do not exist.
Keywords:
Green function, sum of series, values of the Riemann zeta function at even points,
values of the Dirichlet beta function at odd points.
@article{FAA_2022_56_1_a5,
author = {K. A. Mirzoev and T. A. Safonova},
title = {Polynomials in the differentiation operator and formulas for the sums of some converging series},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {81--93},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/}
}
TY - JOUR AU - K. A. Mirzoev AU - T. A. Safonova TI - Polynomials in the differentiation operator and formulas for the sums of some converging series JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 81 EP - 93 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/ LA - ru ID - FAA_2022_56_1_a5 ER -
%0 Journal Article %A K. A. Mirzoev %A T. A. Safonova %T Polynomials in the differentiation operator and formulas for the sums of some converging series %J Funkcionalʹnyj analiz i ego priloženiâ %D 2022 %P 81-93 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/ %G ru %F FAA_2022_56_1_a5
K. A. Mirzoev; T. A. Safonova. Polynomials in the differentiation operator and formulas for the sums of some converging series. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/