Polynomials in the differentiation operator and formulas for the sums of some converging series
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P_n(x)$ be any polynomial of degree $n\geq 2$ with real coefficients such that $P_n(k)\ne 0$ for $k\in\mathbb{Z}$. In the paper, in particular, the sum of a series of the form $\sum_{k=-\infty}^{+\infty}1/P_n(k)$ is expressed as the value at $(0,0)$ of the Green function of the self-adjoint problem generated by the differential expression $l_n[y]=P_n(i\,d/dx) y$ and the boundary conditions $y^{(j)}(0)=y^{(j)}(2\pi)$ ($j=0,1,\dots,n-1$). Thus, such a sum is explicitly expressed in terms of the value of an easy-to-construct elementary function. These formulas, obviously, also apply to sums of the form $\sum_{k=0}^{+\infty}1/P_n(k^2)$, while it is well known that similar general formulas for the sum $\sum_{k=0}^{+\infty}1/P_n(k)$ do not exist.
Keywords: Green function, sum of series, values of the Riemann zeta function at even points, values of the Dirichlet beta function at odd points.
@article{FAA_2022_56_1_a5,
     author = {K. A. Mirzoev and T. A. Safonova},
     title = {Polynomials in the differentiation operator and formulas for the sums of some converging series},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/}
}
TY  - JOUR
AU  - K. A. Mirzoev
AU  - T. A. Safonova
TI  - Polynomials in the differentiation operator and formulas for the sums of some converging series
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 81
EP  - 93
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/
LA  - ru
ID  - FAA_2022_56_1_a5
ER  - 
%0 Journal Article
%A K. A. Mirzoev
%A T. A. Safonova
%T Polynomials in the differentiation operator and formulas for the sums of some converging series
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 81-93
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/
%G ru
%F FAA_2022_56_1_a5
K. A. Mirzoev; T. A. Safonova. Polynomials in the differentiation operator and formulas for the sums of some converging series. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a5/

[1] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam. S formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979

[2] NIST Handbook of Mathematcal Functuios, NIST and Cambridge University Press, New York, 2010

[3] R. Aski, R. Roi, Dzh. Endryus, Spetsialnye funktsii, MTsNMO, M., 2013

[4] K. A. Mirzoev, T. A. Safonova, “Funktsiya Grina obyknovennykh differentsialnykh operatorov i integralnoe predstavlenie summ nekotorykh stepennykh ryadov”, Dokl. RAN, 482:5 (2018), 500–503 | DOI | Zbl

[5] K. A. Mirzoev, T. A. Safonova, “Obyknovennye differentsialnye operatory i integralnoe predstavlenie summ nekotorykh stepennykh ryadov”, Trudy MMO, 80:2 (2019), 157–177 | Zbl

[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, v. 1, Vischa shkola, Kharkov, 1977 | MR

[7] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, 2002 | MR