Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_1_a4, author = {I. D. Kan}, title = {Strengthening of the {Burgein--Kontorovich} theorem on small values of {Hausdorff} dimension}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {66--80}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/} }
TY - JOUR AU - I. D. Kan TI - Strengthening of the Burgein--Kontorovich theorem on small values of Hausdorff dimension JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 66 EP - 80 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/ LA - ru ID - FAA_2022_56_1_a4 ER -
I. D. Kan. Strengthening of the Burgein--Kontorovich theorem on small values of Hausdorff dimension. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/
[1] S. K. Zaremba, “La méthode des "bons treillis" pour le calcul des intégerales multiples”, Applications of Number Theory to Numerical Analysis (Montreal, Canada, 1971), Academic Press, New York, 1972, 39–119 | DOI | MR
[2] H. Niederreiter, “Dyadic fractions with small partial quotients”, Monatsh. Math., 101:4 (1986), 309–315 | DOI | MR | Zbl
[3] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR | Zbl
[4] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963
[5] N. M. Korobov, “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25
[6] D. Hensley, “The Hausdorff dimensions of some continued fraction cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl
[7] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math., 180:1 (2014), 137–196 | DOI | MR | Zbl
[8] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546
[9] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168
[10] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl
[11] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[12] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl
[13] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR | Zbl
[14] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Trudy MIAN, 296 (2017), 133–139 | DOI | Zbl
[15] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR | Zbl
[16] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI | MR | Zbl
[17] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | MR | Zbl
[18] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl
[19] M. Pollicott, P. Vytnova, Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian group, arXiv: 2012.07083
[20] I. D. Shkredov, Growth in Chevalley groups relatively to parabolic subgroups and some applications, arXiv: 2003.12785
[21] N. G. Moshchevitin, B. Murphy, I. D. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238 (2020), 807–835 | DOI | MR | Zbl
[22] N. G. Moshchevitin, I. D. Shkredov, On a modular form of Zaremba's conjecture, arXiv: 1911.07487
[23] N. G. Moshchevitin, On some open problems in diophantine approximation, arXiv: 1202.4539
[24] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovaniya informatiki, Mir, M., 1998 | MR
[25] R. Von, Metod Khardi–Littlvuda, Mir, M., 1985 | MR