Strengthening of the Burgein--Kontorovich theorem on small values of Hausdorff dimension
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 66-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{D}_\mathbf{A}(N)$ be the set of all integers not exceeding $N$ and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet $\mathbf{A}$. A new lower bound for the cardinality $|\mathfrak{D}_\mathbf{A}(N)|$ is obtained, whose nontrivial part improves that known previously by up to $28\%$. Thus, for $\mathbf{A}=\{1,2\}$, a formula derived in the paper implies the inequality $|\mathfrak{D}_{\{1,2 \}}(N)|\gg N^{0.531+0.024}$ with nontrivial part $0.024$. The preceding result of the author was $|\mathfrak{D}_{\{1,2 \}} (N)|\gg N^{0.531+0.019}$, and a calculation by the original 2011 theorem of Bourgain and Kontorovich gave $|\mathfrak{D}_{\{1,2 \}}(N)|$ $\gg N^{0.531+0.006}$.
Keywords: continued fraction, trigonometric sum
Mots-clés : Zaremba's conjecture, Hausdorff dimension.
@article{FAA_2022_56_1_a4,
     author = {I. D. Kan},
     title = {Strengthening of the {Burgein--Kontorovich}  theorem on small values of {Hausdorff} dimension},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--80},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Strengthening of the Burgein--Kontorovich  theorem on small values of Hausdorff dimension
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 66
EP  - 80
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/
LA  - ru
ID  - FAA_2022_56_1_a4
ER  - 
%0 Journal Article
%A I. D. Kan
%T Strengthening of the Burgein--Kontorovich  theorem on small values of Hausdorff dimension
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 66-80
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/
%G ru
%F FAA_2022_56_1_a4
I. D. Kan. Strengthening of the Burgein--Kontorovich  theorem on small values of Hausdorff dimension. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a4/

[1] S. K. Zaremba, “La méthode des "bons treillis" pour le calcul des intégerales multiples”, Applications of Number Theory to Numerical Analysis (Montreal, Canada, 1971), Academic Press, New York, 1972, 39–119 | DOI | MR

[2] H. Niederreiter, “Dyadic fractions with small partial quotients”, Monatsh. Math., 101:4 (1986), 309–315 | DOI | MR | Zbl

[3] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR | Zbl

[4] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[5] N. M. Korobov, “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25

[6] D. Hensley, “The Hausdorff dimensions of some continued fraction cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl

[7] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math., 180:1 (2014), 137–196 | DOI | MR | Zbl

[8] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546

[9] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168

[10] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | MR | Zbl

[11] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Mosc. J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[12] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. matem., 79:2 (2015), 77–100 | DOI | MR | Zbl

[13] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. matem., 80:6 (2016), 103–126 | DOI | MR | Zbl

[14] I. D. Kan, “Usilenie teoremy Burgeina–Kontorovicha. V”, Trudy MIAN, 296 (2017), 133–139 | DOI | Zbl

[15] I. D. Kan, “Verna li gipoteza Zaremby?”, Matem. sb., 210:3 (2019), 75–130 | DOI | MR | Zbl

[16] I. D. Kan, “Usilenie metoda Burgeina–Kontorovicha: tri novykh teoremy”, Matem. sb., 212:7 (2021), 39–83 | DOI | MR | Zbl

[17] I. D. Kan, “Usilenie odnoi teoremy Burgeina–Kontorovicha”, Dalnevost. matem. zhurn., 20:2 (2020), 164–190 | MR | Zbl

[18] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl

[19] M. Pollicott, P. Vytnova, Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian group, arXiv: 2012.07083

[20] I. D. Shkredov, Growth in Chevalley groups relatively to parabolic subgroups and some applications, arXiv: 2003.12785

[21] N. G. Moshchevitin, B. Murphy, I. D. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238 (2020), 807–835 | DOI | MR | Zbl

[22] N. G. Moshchevitin, I. D. Shkredov, On a modular form of Zaremba's conjecture, arXiv: 1911.07487

[23] N. G. Moshchevitin, On some open problems in diophantine approximation, arXiv: 1202.4539

[24] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovaniya informatiki, Mir, M., 1998 | MR

[25] R. Von, Metod Khardi–Littlvuda, Mir, M., 1985 | MR