Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-sided estimate is proposed for the $K$-functional of the pair $(C[0,1], BV(X))$, where $BV(X)$ is the space of functions of generalized bounded variation constructed from a symmetric sequence space $X$. The application of this estimate to various sequence spaces $X$ yields new interpolation theorems for spaces of finite Wiener–Young $h$-variation, of finite Waterman $\Lambda$-variation, of bounded modulus of variation in the sense of Chanturiya, etc.
Keywords: space of functions of generalized bounded variation, $K$-functional, real interpolation method.
@article{FAA_2022_56_1_a1,
     author = {E. I. Berezhnoi},
     title = {Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 26
EP  - 36
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/
LA  - ru
ID  - FAA_2022_56_1_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 26-36
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/
%G ru
%F FAA_2022_56_1_a1
E. I. Berezhnoi. Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/

[1] N. Wiener, “The guadratic variation of a function and its Fourier coefficients”, Mass. J. Math., 3 (1924), 72–94 | Zbl

[2] L. C. Young, “Sur une généralization de la notion de variation de poissance $p$-ieme bornee au sence de N. Wiener, et sur la convergence des séries de Fourier”, C. R. Acad. Sci. Paris Ser. I Math., 204 (1937), 470–472

[3] Z. A. Chanturiya, “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, Dokl. AN SSSR, 214:1 (1974), 63–66 | Zbl

[4] D. Waterman, “On convergence of Fourier series of functions of generalized variation”, Studia Math., 44 (1972), 107–117 | DOI | MR | Zbl

[5] S. Perlman, “Functions of generalised variation”, Fund. Math., 105:3 (1979/80), 200–211 | MR

[6] M. Schramm, D. Waterman, “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 407–410 | DOI | MR | Zbl

[7] E. I. Berezhnoi, “Tochnaya teorema ispravimosti dlya prostranstv funktsii obobschennoi ogranichennoi variatsii”, Matem. zametki, 56:5 (1994), 10–21 | MR | Zbl

[8] E. I. Berezhnoi, “Prostranstva funktsii obobschennoi ogranichennoi variatsii. I. Teoremy vlozheniya. Otsenki konstant Lebega”, Sib. matem. zhurn., 40:5 (1999), 997–1011 | MR | Zbl

[9] E. I. Berezhnoi, “Prostranstva funktsii obobschennoi ogranichennoi variatsii. II. Voprosy ravnomernoi skhodimosti ryadov Fure”, Sib. matem. zhurn., 42:3 (2001), 515–532 | MR | Zbl

[10] A. A. Kruglov, M. Z. Solomyak, “Interpolyatsiya operatorov v prostranstvakh $V_p$”, Vestnik LGU, 1971, no. 3, 54–60 | Zbl

[11] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | DOI | MR | Zbl

[12] A. A. Kruglov, “Interpolyatsiya funktsii ogranichennoi variatsii”, Vestnik LGU, 1972, no. 1, 155–158

[13] Yu. A. Brudnyi, “Splain-approksimatsiya i funktsii ogranichennoi variatsii”, Dokl. AN SSSR, 215:3 (1974), 511–513 | Zbl

[14] Yu. A. Brudnyĭ, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, v. 1, North-Holland, Amsterdam, 1991 | MR | Zbl

[15] Yu. A. Brudnyi, S. G. Krein, E. M. Semenov, “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhn. Ser. Mat. anal., 24, VINITI, M., 1986, 3–163

[16] J. Bergh, J. Peetre, “On the spaces $V_p$ ($0 p \infty$)”, Boll. Unione Mat. Ital., 10 (1974), 632–648 | MR | Zbl

[17] F. Cobos, N. Kruglyak, “Exact minimizers for the couple $(L^{\infty}, BV )$ and the one-dimensional analogue of the Rudin–Osher–Fatemi model”, J. Approx. Theory, 163:4 (2011), 481–490 | DOI | MR | Zbl

[18] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1977 | MR

[19] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, I. Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR