Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_1_a1, author = {E. I. Berezhnoi}, title = {Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--36}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/} }
TY - JOUR AU - E. I. Berezhnoi TI - Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 26 EP - 36 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/ LA - ru ID - FAA_2022_56_1_a1 ER -
E. I. Berezhnoi. Two-sided estimates of the $K$-functional for spaces of functions of generalized bounded variation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a1/
[1] N. Wiener, “The guadratic variation of a function and its Fourier coefficients”, Mass. J. Math., 3 (1924), 72–94 | Zbl
[2] L. C. Young, “Sur une généralization de la notion de variation de poissance $p$-ieme bornee au sence de N. Wiener, et sur la convergence des séries de Fourier”, C. R. Acad. Sci. Paris Ser. I Math., 204 (1937), 470–472
[3] Z. A. Chanturiya, “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, Dokl. AN SSSR, 214:1 (1974), 63–66 | Zbl
[4] D. Waterman, “On convergence of Fourier series of functions of generalized variation”, Studia Math., 44 (1972), 107–117 | DOI | MR | Zbl
[5] S. Perlman, “Functions of generalised variation”, Fund. Math., 105:3 (1979/80), 200–211 | MR
[6] M. Schramm, D. Waterman, “On the magnitude of Fourier coefficients”, Proc. Amer. Math. Soc., 85:3 (1982), 407–410 | DOI | MR | Zbl
[7] E. I. Berezhnoi, “Tochnaya teorema ispravimosti dlya prostranstv funktsii obobschennoi ogranichennoi variatsii”, Matem. zametki, 56:5 (1994), 10–21 | MR | Zbl
[8] E. I. Berezhnoi, “Prostranstva funktsii obobschennoi ogranichennoi variatsii. I. Teoremy vlozheniya. Otsenki konstant Lebega”, Sib. matem. zhurn., 40:5 (1999), 997–1011 | MR | Zbl
[9] E. I. Berezhnoi, “Prostranstva funktsii obobschennoi ogranichennoi variatsii. II. Voprosy ravnomernoi skhodimosti ryadov Fure”, Sib. matem. zhurn., 42:3 (2001), 515–532 | MR | Zbl
[10] A. A. Kruglov, M. Z. Solomyak, “Interpolyatsiya operatorov v prostranstvakh $V_p$”, Vestnik LGU, 1971, no. 3, 54–60 | Zbl
[11] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190 | DOI | MR | Zbl
[12] A. A. Kruglov, “Interpolyatsiya funktsii ogranichennoi variatsii”, Vestnik LGU, 1972, no. 1, 155–158
[13] Yu. A. Brudnyi, “Splain-approksimatsiya i funktsii ogranichennoi variatsii”, Dokl. AN SSSR, 215:3 (1974), 511–513 | Zbl
[14] Yu. A. Brudnyĭ, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, v. 1, North-Holland, Amsterdam, 1991 | MR | Zbl
[15] Yu. A. Brudnyi, S. G. Krein, E. M. Semenov, “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhn. Ser. Mat. anal., 24, VINITI, M., 1986, 3–163
[16] J. Bergh, J. Peetre, “On the spaces $V_p$ ($0 p \infty$)”, Boll. Unione Mat. Ital., 10 (1974), 632–648 | MR | Zbl
[17] F. Cobos, N. Kruglyak, “Exact minimizers for the couple $(L^{\infty}, BV )$ and the one-dimensional analogue of the Rudin–Osher–Fatemi model”, J. Approx. Theory, 163:4 (2011), 481–490 | DOI | MR | Zbl
[18] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1977 | MR
[19] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, I. Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR