Single-Valued Extension Property and Property $(\omega)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 78-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stability of the single-valued extension property for operators on a Hilbert space. Further, relations between the stability of the single-valued extension property and of property $(\omega)$ are given.
Keywords: single-valued extension property, property $(\omega)$
Mots-clés : compact perturbation.
@article{FAA_2021_55_4_a5,
     author = {Lili Yang and Xiaohong Cao},
     title = {Single-Valued {Extension} {Property} and {Property} $(\omega)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--90},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a5/}
}
TY  - JOUR
AU  - Lili Yang
AU  - Xiaohong Cao
TI  - Single-Valued Extension Property and Property $(\omega)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 78
EP  - 90
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a5/
LA  - ru
ID  - FAA_2021_55_4_a5
ER  - 
%0 Journal Article
%A Lili Yang
%A Xiaohong Cao
%T Single-Valued Extension Property and Property $(\omega)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 78-90
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a5/
%G ru
%F FAA_2021_55_4_a5
Lili Yang; Xiaohong Cao. Single-Valued Extension Property and Property $(\omega)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 78-90. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a5/

[1] P. Aiena, Fredholm and Local Spectral Theory II, with Applications to Weyl-type theorems, Lecture Notes in Math., no. 2235, Springer, Cham, 2019 | MR

[2] P. Aiena, O. Garcia, “Generalized Browder's Theorem and SVEP”, Mediterr. J. Math., 4:2 (2007), 215–228 | DOI | MR | Zbl

[3] P. Aiena, M. T. Biondi, “Property $(\omega)$ and perturbations”, J. Math. Anal. Appl., 336:1 (2007), 683–692 | DOI | MR | Zbl

[4] P. Aiena, P. Peña, “Variations on Weyl's theorem”, J. Math. Anal. Appl., 324:1 (2006), 566–579 | DOI | MR | Zbl

[5] M. Berkani, M. Sarih, H. Zariouh, “Browder-type theorems and SVEP”, Mediterr. J. Math., 8:3 (2011), 399–409 | DOI | MR | Zbl

[6] I. Colojoară, C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York–London–Paris, 1968 | MR | Zbl

[7] J. B. Conway, A Course in Functional Analysis, Grad. Text in Math., no. 96, Springer-Verlag, New York, 1990 | MR | Zbl

[8] N. Dunford, “A survey of the spectral operators”, Bull. Amer. Math. Soc., 64 (1958), 217–274 | DOI | MR | Zbl

[9] J. Eschmeier, M. Putinar, Spectral Decompositions and Analytic Sheaves, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[10] D. A. Herrero, Approximation of Hilbert Space Operators, v. 1, Pitman Research Notes in Mathematics Series, no. 224, Longman Scientific and Technical, Hasrlow, 1989 | MR

[11] D. A. Herrero, T. J. Taylor, Z. Y. Wang, “Variation of the point spectrum under compact perturbations”, Topics in Operator Theory, Oper. Theory Adv. Appl., no. 32, Birkäuser, Basel, 1988, 113–158 | MR

[12] C. L. Jiang, Z. Y. Wang, Structures of Hilbert Space Operators, World Scientific Publishing, Hackensack, 2006 | MR

[13] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monographs, New Ser., no. 20, The Clarendon Press, Oxford University Press, New York, 2000 | MR

[14] C. G. Li, S. Zhu, Y. L. Feng, “Weyl's theorem for functions of operators and approximation”, Inregral Equations Operator Theory, 67:4 (2010), 481–497 | DOI | MR | Zbl

[15] V. Rakoc̆ević, “On a class of operators”, Mat. Vesnik, 37:4 (1985), 423–426 | MR | Zbl

[16] W. J. Shi, X. H. Cao, “Property $(\omega)$ and its perturbations”, Acta Math. Sinica, 30:5 (2014), 797–804 | DOI | MR | Zbl

[17] A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, John Wiley Sons, New York–Chichester–Brisbane, 1980 | MR | Zbl

[18] S. Zhu, C. G. Li, “SVEP and compact perturbations”, J. Math. Anal. Appl., 380:1 (2011), 69–75 | DOI | MR | Zbl