Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_4_a4, author = {W. Teng}, title = {Dunkl {Translations,} {Dunkl-Type} {BMO} {Space,} and {Riesz} {Transforms} for the {Dunkl} {Transform} on $L^\infty$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {63--77}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a4/} }
TY - JOUR AU - W. Teng TI - Dunkl Translations, Dunkl-Type BMO Space, and Riesz Transforms for the Dunkl Transform on $L^\infty$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 63 EP - 77 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a4/ LA - ru ID - FAA_2021_55_4_a4 ER -
W. Teng. Dunkl Translations, Dunkl-Type BMO Space, and Riesz Transforms for the Dunkl Transform on $L^\infty$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 63-77. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a4/
[1] B. Amri, J.-P. Anker, M. Sifi, “Three results in Dunkl analysis”, Colloq. Math., 118:1 (2010), 299–312 | DOI | MR | Zbl
[2] B. Amri, M. Sifi, “Riesz transforms for the Dunkl transform”, Ann. Math. Blaise Pascal, 19:1 (2012), 247–262 | DOI | MR | Zbl
[3] J.-P. Anker, J. Dziubański, A. Hejna, “Harmonic functions, conjugate harmonic functions and the Hardy space $H^1$ in the rational Dunkl setting”, J. Fourier Anal. Appl., 25:5 (2019), 2356–2418 | DOI | MR | Zbl
[4] F. Dai, H. Wang, “A transference theorem for the Dunkl transform and its applications”, J. Funct. Anal., 258:12 (2010), 4052–4074 | DOI | MR | Zbl
[5] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[6] J. Dziubański, A. Hejna, “Remark on atomic decompositions for the Hardy space $H^1$ in the rational Dunkl setting”, Studia Math., 251:1 (2020), 89–110 | DOI | MR | Zbl
[7] J. Dziubański, A. Hejna, “Hörmander's multiplier theorem for the Dunkl transform”, J. Funct. Anal, 277:7 (2019), 2133–2159 | DOI | MR | Zbl
[8] V. I. Ivanov, “Vesovye neravenstva dlya preobrazovanii Danklya–Rissa i gradienta Danklya”, Chebyshevskii sb., 21:4 (2020), 97–106 | DOI | MR | Zbl
[9] L. Gallardo, C. Rejeb, “Support properties of the intertwining and the mean value operators in Dunkl theory”, Proc. Amer. Math. Soc., 146:1 (2017), 145–152 | DOI | MR
[10] L. Gallardo, C. Rejeb, “A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications”, Trans. Amer. Math. Soc., 368:5 (2016), 3727–3753 | DOI | MR | Zbl
[11] D. V. Gorbachev, V. I. Ivanov, S. Y. Tikhonov, “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[12] V. S. Guliyev, Y. Y. Mammadov, “On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line”, J. Math. Anal. Appl., 353:1 (2009), 449–459 | DOI | MR | Zbl
[13] M. Rösler, “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355:6 (2003), 2413–2438 | DOI | MR | Zbl
[14] S. Thangavelu, Y. Xu, “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199:1 (2007), 181–195 | DOI | MR | Zbl