A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we discuss some necessary and some sufficient conditions for the relative injectivity
of the $C_0(S)$-module $C_0(S)$, where $S$ is a locally compact Hausdorff space.
We also give a Banach module version of Sobczyk's theorem.
The main result of the paper is as follows: if the $C_0(S)$-module $C_0(S)$ is relatively injective,
then
$S=\beta(S\setminus \{s\})$ for any limit point $s\in S$.
Keywords:
injective Banach module, $C_0(S)$-space, almost compact space.
@article{FAA_2021_55_4_a3,
author = {N. T. Nemesh},
title = {A {Note} on {Relatively} {Injective} $C_0(S)${-Modules} $C_0(S)$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {55--62},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/}
}
N. T. Nemesh. A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/