A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we discuss some necessary and some sufficient conditions for the relative injectivity of the $C_0(S)$-module $C_0(S)$, where $S$ is a locally compact Hausdorff space. We also give a Banach module version of Sobczyk's theorem. The main result of the paper is as follows: if the $C_0(S)$-module $C_0(S)$ is relatively injective, then $S=\beta(S\setminus \{s\})$ for any limit point $s\in S$.
Keywords: injective Banach module, $C_0(S)$-space, almost compact space.
@article{FAA_2021_55_4_a3,
     author = {N. T. Nemesh},
     title = {A {Note} on {Relatively} {Injective} $C_0(S)${-Modules} $C_0(S)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 55
EP  - 62
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/
LA  - ru
ID  - FAA_2021_55_4_a3
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 55-62
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/
%G ru
%F FAA_2021_55_4_a3
N. T. Nemesh. A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/