Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_4_a3, author = {N. T. Nemesh}, title = {A {Note} on {Relatively} {Injective} $C_0(S)${-Modules} $C_0(S)$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {55--62}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/} }
N. T. Nemesh. A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/
[1] H. Hahn, “Über lineare Gleichungssysteme in linearen Räumen”, J. Reine Angew. Math., 157 (1927), 214–229 | DOI | MR | Zbl
[2] S. Banach, “Sur les fonctionnelles linéaires. I”, Stud. Math., 1:1 (1929), 211–216 | DOI | Zbl
[3] S. Banach, “Sur les fonctionnelles linéaires. II”, Stud. Math., 1:1 (1929), 223–239 | DOI | Zbl
[4] J. L. Blasco, C. Ivorra, “On constructing injective spaces of type $C(K)$”, Indag. Math., 9 (12), 161–172 | DOI | MR | Zbl
[5] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl
[6] M. Hrušák, A. Tamariz-Mascarúa, M. Tkachenko, Pseudocompact Topological Spaces, Springer, Cham, 2018 | MR | Zbl
[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989
[8] A. Avilés, F. C. Sánchez, J. MF. Castillo, M. González, Y. Moreno, Separably injective Banach spaces, Lecture Notes in Math., no. 2132, Springer International Publishing, Switzerland, 2016 | DOI | MR | Zbl
[9] M. Hasumi, “The extension property of complex Banach spaces”, Tohoku Math. J., Second Ser., 10:2 (1958), 135–142 | MR | Zbl
[10] S. K. Berberian, Baer $^*$-rings, Grundlehren der matematischen Wissenschaften, no. 195, Springer-Verlag, Berlin–Heidelberg, 1972 | DOI | MR
[11] M. Takesaki, “On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras”, Kodai Math. Semin. Rep., 12 (1960), 1–10 | MR | Zbl
[12] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR
[13] K. Kunen, Set Theory, Studies in Logic, no. 34, College Publications, London, 2013 | MR
[14] N. J. Fine, L. Gillman, “Extension of continuous functions in $\beta {\mathbf{N}}$”, Bull. Amer. Math. Soc., 66 (1960), 376–381 | DOI | MR | Zbl
[15] E. van Douwen, K. Kunen, J. van Mill, “There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$”, Proc. Amer. Math. Soc., 105:2 (1989), 462–470 | MR | Zbl
[16] P. Ramsden, Homological Properties of Semigroup Algebras, Ph.D. Thesis, The University of Leeds, 2009 | MR
[17] D. Amir, “Projections onto continuous function spaces”, Proc. Amer. Math. Soc., 15:3 (1964), 396–402 | DOI | MR | Zbl
[18] H. Rosenthal, “On relatively disjoint families of measures, with some applications to Banach space theory”, Stud. Math., 37:1 (1970), 13–36 | DOI | MR | Zbl
[19] A. Sobczyk, “Projection of the space ($m$) on its subspace ($c_0$)”, Bull. Amer. Math. Soc., 47 (1941), 938–947 | DOI | MR
[20] M. Zippin, “The separable extension problem”, Israel J. Math., 26:3–4 (1977), 372–387 | DOI | MR | Zbl
[21] M. Fabian, P. Habala, P. Hajek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Non-Linear Analysis, Springer-Verlag, New York, 2011 | MR
[22] A. Grothendieck, “Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$”, Canad. J. Math., 5 (1953), 129–173 | DOI | MR | Zbl
[23] N. Dunford, B. J. Pettis, “Linear operations on summable functions”, Trans. Amer. Math. Soc., 47:3 (1940), 323–392 | DOI | MR