A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we discuss some necessary and some sufficient conditions for the relative injectivity of the $C_0(S)$-module $C_0(S)$, where $S$ is a locally compact Hausdorff space. We also give a Banach module version of Sobczyk's theorem. The main result of the paper is as follows: if the $C_0(S)$-module $C_0(S)$ is relatively injective, then $S=\beta(S\setminus \{s\})$ for any limit point $s\in S$.
Keywords: injective Banach module, $C_0(S)$-space, almost compact space.
@article{FAA_2021_55_4_a3,
     author = {N. T. Nemesh},
     title = {A {Note} on {Relatively} {Injective} $C_0(S)${-Modules} $C_0(S)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 55
EP  - 62
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/
LA  - ru
ID  - FAA_2021_55_4_a3
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 55-62
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/
%G ru
%F FAA_2021_55_4_a3
N. T. Nemesh. A Note on Relatively Injective $C_0(S)$-Modules $C_0(S)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 55-62. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a3/

[1] H. Hahn, “Über lineare Gleichungssysteme in linearen Räumen”, J. Reine Angew. Math., 157 (1927), 214–229 | DOI | MR | Zbl

[2] S. Banach, “Sur les fonctionnelles linéaires. I”, Stud. Math., 1:1 (1929), 211–216 | DOI | Zbl

[3] S. Banach, “Sur les fonctionnelles linéaires. II”, Stud. Math., 1:1 (1929), 223–239 | DOI | Zbl

[4] J. L. Blasco, C. Ivorra, “On constructing injective spaces of type $C(K)$”, Indag. Math., 9 (12), 161–172 | DOI | MR | Zbl

[5] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[6] M. Hrušák, A. Tamariz-Mascarúa, M. Tkachenko, Pseudocompact Topological Spaces, Springer, Cham, 2018 | MR | Zbl

[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989

[8] A. Avilés, F. C. Sánchez, J. MF. Castillo, M. González, Y. Moreno, Separably injective Banach spaces, Lecture Notes in Math., no. 2132, Springer International Publishing, Switzerland, 2016 | DOI | MR | Zbl

[9] M. Hasumi, “The extension property of complex Banach spaces”, Tohoku Math. J., Second Ser., 10:2 (1958), 135–142 | MR | Zbl

[10] S. K. Berberian, Baer $^*$-rings, Grundlehren der matematischen Wissenschaften, no. 195, Springer-Verlag, Berlin–Heidelberg, 1972 | DOI | MR

[11] M. Takesaki, “On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras”, Kodai Math. Semin. Rep., 12 (1960), 1–10 | MR | Zbl

[12] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR

[13] K. Kunen, Set Theory, Studies in Logic, no. 34, College Publications, London, 2013 | MR

[14] N. J. Fine, L. Gillman, “Extension of continuous functions in $\beta {\mathbf{N}}$”, Bull. Amer. Math. Soc., 66 (1960), 376–381 | DOI | MR | Zbl

[15] E. van Douwen, K. Kunen, J. van Mill, “There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$”, Proc. Amer. Math. Soc., 105:2 (1989), 462–470 | MR | Zbl

[16] P. Ramsden, Homological Properties of Semigroup Algebras, Ph.D. Thesis, The University of Leeds, 2009 | MR

[17] D. Amir, “Projections onto continuous function spaces”, Proc. Amer. Math. Soc., 15:3 (1964), 396–402 | DOI | MR | Zbl

[18] H. Rosenthal, “On relatively disjoint families of measures, with some applications to Banach space theory”, Stud. Math., 37:1 (1970), 13–36 | DOI | MR | Zbl

[19] A. Sobczyk, “Projection of the space ($m$) on its subspace ($c_0$)”, Bull. Amer. Math. Soc., 47 (1941), 938–947 | DOI | MR

[20] M. Zippin, “The separable extension problem”, Israel J. Math., 26:3–4 (1977), 372–387 | DOI | MR | Zbl

[21] M. Fabian, P. Habala, P. Hajek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Non-Linear Analysis, Springer-Verlag, New York, 2011 | MR

[22] A. Grothendieck, “Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$”, Canad. J. Math., 5 (1953), 129–173 | DOI | MR | Zbl

[23] N. Dunford, B. J. Pettis, “Linear operations on summable functions”, Trans. Amer. Math. Soc., 47:3 (1940), 323–392 | DOI | MR