The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 22-39
Voir la notice de l'article provenant de la source Math-Net.Ru
In a recent paper, given an arbitrary homogeneous cohomological field theory (CohFT),
Rossi, Shadrin, and the first author proposed a simple formula for a bracket on the space of
local functionals, which conjecturally gives a second Hamiltonian structure
for the double ramification hierarchy associated to the CohFT. In this paper we prove
this conjecture in the approximation up to genus $1$ for any semisimple CohFT and relate this bracket
to the second Poisson bracket of the Dubrovin–Zhang hierarchy by an explicit Miura transformation.
Keywords:
moduli space of curves, cohomology ring, partial differential equation.
@article{FAA_2021_55_4_a1,
author = {O. Brauer and A. Yu. Buryak},
title = {The {Bi-Hamiltonian} {Structures} of the {DR} and {DZ} {Hierarchies} in the {Approximation} up to {Genus} {One}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {22--39},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/}
}
TY - JOUR AU - O. Brauer AU - A. Yu. Buryak TI - The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 22 EP - 39 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/ LA - ru ID - FAA_2021_55_4_a1 ER -
%0 Journal Article %A O. Brauer %A A. Yu. Buryak %T The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 22-39 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/ %G ru %F FAA_2021_55_4_a1
O. Brauer; A. Yu. Buryak. The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 22-39. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/