The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 22-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In a recent paper, given an arbitrary homogeneous cohomological field theory (CohFT), Rossi, Shadrin, and the first author proposed a simple formula for a bracket on the space of local functionals, which conjecturally gives a second Hamiltonian structure for the double ramification hierarchy associated to the CohFT. In this paper we prove this conjecture in the approximation up to genus $1$ for any semisimple CohFT and relate this bracket to the second Poisson bracket of the Dubrovin–Zhang hierarchy by an explicit Miura transformation.
Keywords: moduli space of curves, cohomology ring, partial differential equation.
@article{FAA_2021_55_4_a1,
     author = {O. Brauer and A. Yu. Buryak},
     title = {The {Bi-Hamiltonian} {Structures} of the {DR} and {DZ} {Hierarchies} in the {Approximation} up to {Genus} {One}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--39},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/}
}
TY  - JOUR
AU  - O. Brauer
AU  - A. Yu. Buryak
TI  - The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 22
EP  - 39
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/
LA  - ru
ID  - FAA_2021_55_4_a1
ER  - 
%0 Journal Article
%A O. Brauer
%A A. Yu. Buryak
%T The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 22-39
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/
%G ru
%F FAA_2021_55_4_a1
O. Brauer; A. Yu. Buryak. The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 22-39. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/