Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_4_a1, author = {O. Brauer and A. Yu. Buryak}, title = {The {Bi-Hamiltonian} {Structures} of the {DR} and {DZ} {Hierarchies} in the {Approximation} up to {Genus} {One}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {22--39}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/} }
TY - JOUR AU - O. Brauer AU - A. Yu. Buryak TI - The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 22 EP - 39 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/ LA - ru ID - FAA_2021_55_4_a1 ER -
%0 Journal Article %A O. Brauer %A A. Yu. Buryak %T The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 22-39 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/ %G ru %F FAA_2021_55_4_a1
O. Brauer; A. Yu. Buryak. The Bi-Hamiltonian Structures of the DR and DZ Hierarchies in the Approximation up to Genus One. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 22-39. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a1/
[1] A. Buryak, “Double ramification cycles and integrable hierarchies”, Comm. Math. Phys., 336:3 (2015), 1085–1107 | DOI | MR | Zbl
[2] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi, “Tau-structure for the double ramification hierarchies”, Comm. Math. Phys., 363:1 (2018), 191–260 | DOI | MR | Zbl
[3] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi, “Integrable systems of double ramification type”, Intern. Math. Res. Notices, 2020:24 (2020), 10381–10446 | DOI | MR | Zbl
[4] A. Buryak, J. Guéré, “Towards a description of the double ramification hierarchy for Witten's $r$-spin class”, J. Math. Pures Appl., 106:5 (2016), 837–865 | DOI | MR | Zbl
[5] A. Buryak, J. Guéré, P. Rossi, “DR/DZ equivalence conjecture and tautological relations”, Geom. Topol., 23:7 (2019), 3537–3600 | DOI | MR | Zbl
[6] A. Buryak, H. Posthuma, S. Shadrin, “On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket”, J. Geom. Phys., 62:7 (2012), 1639–1651 | DOI | MR | Zbl
[7] A. Buryak, H. Posthuma, S. Shadrin, “A polynomial bracket for the Dubrovin–Zhang hierarchies”, J. Differential Geom., 92:1 (2012), 153–185 | DOI | MR | Zbl
[8] A. Buryak, P. Rossi, “Recursion relations for double ramification hierarchies”, Comm. Math. Phys., 342:2 (2016), 533–568 | DOI | MR | Zbl
[9] A. Buryak, P. Rossi, S. Shadrin, “Towards a bihamiltonian structure for the double ramification hierarchy”, Lett. Math. Physics, 111:1 (2021), 13 | DOI | MR | Zbl
[10] A. Buryak, S. Shadrin, L. Spitz, D. Zvonkine, “Integrals of $\psi$-classes over double ramification cycles”, Amer. J. Math., 137:3 (2015), 699–737 | DOI | MR | Zbl
[11] A. du Crest de Villeneuve, P. Rossi, “Quantum $D_4$ Drinfeld–Sokolov hierarchy and quantum singularity theory”, J. Geom. Phys., 141 (2019), 29–44 | DOI | MR | Zbl
[12] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Lectures on the 1st session of CIME, Montecatini Terme, 1993), Lecture Notes in Math., no. 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl
[13] B. Dubrovin, Y. Zhang, “Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation”, Comm. Math. Phys., 198:2 (1998), 311–361 | DOI | MR | Zbl
[14] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math/0108160
[15] B. Dubrovin, Y. Zhang, “Virasoro symmetries of the extended Toda hierarchy”, Comm. Math. Phys., 250:1 (2004), 161–193 | DOI | MR | Zbl
[16] C. Faber, S. Shadrin, D. Zvonkine, “Tautological relations and the $r$-spin Witten conjecture”, Ann. Sci. École Norm. Sup. (4), 43:4 (2010), 621–658 | DOI | MR | Zbl
[17] F. Hernández Iglesias, S. Shadrin, Bi-Hamiltonian recursion, Liu–Pandharipande relations, and vanishing terms of the second Dubrovin–Zhang bracket, arXiv: 2105.15138
[18] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl
[19] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl
[20] S.-Q. Liu, Z. Wang, Y. Zhang, Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds, arXiv: 2109.01846
[21] A. Okounkov, R. Pandharipande, “The equivariant Gromov–Witten theory of ${\mathbb P}^1$”, Ann. of Math., 163:2 (2006), 561–605 | DOI | MR | Zbl
[22] E. Witten, “Two dimensional gravity and intersection theory on moduli space”, Surv. Differential Geom., 1 (1991), 243–310 | DOI | MR | Zbl
[23] E. Witten, “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269 | MR | Zbl