Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the self-adjointness and essential spectrum of 3D Dirac operators with bounded variable magnetic and electrostatic potentials and with singular delta-type potentials with supports on uniformly regular unbounded surfaces $\Sigma$ in $\mathbb{R}^{3}$.
Keywords: 3D Dirac operators, singular potentials, self-adjointness, essential spectrum.
@article{FAA_2021_55_3_a7,
     author = {V. S. Rabinovich},
     title = {Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 85
EP  - 90
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/
LA  - ru
ID  - FAA_2021_55_3_a7
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 85-90
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/
%G ru
%F FAA_2021_55_3_a7
V. S. Rabinovich. Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/