Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the self-adjointness and essential spectrum of 3D Dirac operators with bounded variable magnetic and electrostatic potentials and with singular delta-type potentials with supports on uniformly regular unbounded surfaces $\Sigma$ in $\mathbb{R}^{3}$.
Keywords: 3D Dirac operators, singular potentials, self-adjointness, essential spectrum.
@article{FAA_2021_55_3_a7,
     author = {V. S. Rabinovich},
     title = {Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 85
EP  - 90
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/
LA  - ru
ID  - FAA_2021_55_3_a7
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 85-90
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/
%G ru
%F FAA_2021_55_3_a7
V. S. Rabinovich. Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/

[1] M. S. Agranovich, M. I. Vishik, UMN, 19:3 (1964), 53–161 | MR | Zbl

[2] H. Amman, Elliptic and Parabolic Equations, Springer Proceedings in Mathematics and Statistic, no. 119, Springer-Verlag, Hannover, 2013, 1–42

[3] N. Arrizabalaga, A. Mas, L. Vega, Math. Pures Appl. (9), 102:4 (2014), 617–639 | DOI | MR | Zbl

[4] J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik, J. Math. Pures Appl., 111 (2018), 47–78 | DOI | MR | Zbl

[5] J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik, Quantum Stud. Math. Found., 6:3 (2019), 295–314 | DOI | MR | Zbl

[6] M. Holzmann, Th. Ourmières-Bonafos, K. Pankrashkin,, Rev. Math. Phys., 30:05 (2018), 1850013 | DOI | MR | Zbl

[7] A. Moroianu, Th. Ourmíeres-Bonafos, K. Pankrashkin, J. Math. Pures Appl., 102:4 (2014), 617–639 | DOI | MR

[8] Th. Ourmieres-Bonafos, L. Vega, Publ. Mat., 62:3 (2018), 397–437 | DOI | MR | Zbl

[9] V. S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and their Applications in Operator Theory, Operator Theory: Advances and Applications, no. 150, Birkhäuser Verlag, Basel–Boston–Berlin, 2004 | MR | Zbl

[10] V. S. Rabinovich, Russ. J. Math. Physics, 12:1 (2005), 62–80 | MR | Zbl

[11] V. S. Rabinovich, Appl. Anal., 94:10 (2015), 2077–2094 | DOI | MR | Zbl