Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the self-adjointness and essential spectrum of 3D Dirac
operators with bounded variable magnetic and electrostatic potentials and with
singular delta-type potentials with supports on uniformly regular unbounded
surfaces $\Sigma$ in $\mathbb{R}^{3}$.
Keywords:
3D Dirac operators, singular potentials, self-adjointness,
essential spectrum.
@article{FAA_2021_55_3_a7,
author = {V. S. Rabinovich},
title = {Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--90},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/}
}
TY - JOUR
AU - V. S. Rabinovich
TI - Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2021
SP - 85
EP - 90
VL - 55
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/
LA - ru
ID - FAA_2021_55_3_a7
ER -
V. S. Rabinovich. Dirac operators with singular potentials supported on unbounded surfaces in $\mathbb{R}^{3}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a7/