On approximation of measures by their finite-dimensional images
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Borel measures on separable Banach spaces that are limits of their finite-dimensional images in the weak topology. The class of Banach spaces on which all measures have this property is introduced. The specified property is proved for all measures from the closure in variation of the linear span of the set of measures absolutely continuous with respect to Gaussian measures. Connections with the approximation property and the stochastic approximation property are considered.
Keywords: Borel measure, Gaussian measure, finite-dimensional projection, weak convergence.
@article{FAA_2021_55_3_a5,
     author = {V. I. Bogachev},
     title = {On approximation of measures by their finite-dimensional images},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - On approximation of measures by their finite-dimensional images
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 75
EP  - 81
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/
LA  - ru
ID  - FAA_2021_55_3_a5
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T On approximation of measures by their finite-dimensional images
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 75-81
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/
%G ru
%F FAA_2021_55_3_a5
V. I. Bogachev. On approximation of measures by their finite-dimensional images. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 75-81. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/

[1] V. I. Bogachev, Gaussian Measures, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[2] V. I. Bogachev, Measure Theory, v. 1, 2, Springer-Verlag, Berlin, 2007 | MR | Zbl

[3] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[4] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, Cham, 2017 | MR | Zbl

[5] V. I. Bogachev, O. G. Smolyanov, Real and Functional Analysis, Springer, Cham, 2020 | MR | Zbl

[6] V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss, Studia Math., 159:1 (2003), 103–119 | DOI | MR | Zbl

[7] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math, no. 1730, Springer-Verlag, Berlin–New York, 2000 | DOI | MR | Zbl

[8] W. Herer, Demonstr. Math., 14:3 (1981), 719–724 | MR | Zbl

[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. I, Springer-Verlag, Berli–New York, 1977 | MR | Zbl

[10] Y. Okazaki, Math. Ann., 274:3 (1986), 379–383 | DOI | MR | Zbl

[11] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1975

[12] R. Sztencel, Bull. Acad. Polon. Sci. Sér. Sci. Math., 32:11–12 (1984), 715–719 | MR | Zbl