Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_3_a5, author = {V. I. Bogachev}, title = {On approximation of measures by their finite-dimensional images}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--81}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/} }
V. I. Bogachev. On approximation of measures by their finite-dimensional images. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 75-81. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a5/
[1] V. I. Bogachev, Gaussian Measures, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[2] V. I. Bogachev, Measure Theory, v. 1, 2, Springer-Verlag, Berlin, 2007 | MR | Zbl
[3] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl
[4] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, Cham, 2017 | MR | Zbl
[5] V. I. Bogachev, O. G. Smolyanov, Real and Functional Analysis, Springer, Cham, 2020 | MR | Zbl
[6] V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss, Studia Math., 159:1 (2003), 103–119 | DOI | MR | Zbl
[7] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math, no. 1730, Springer-Verlag, Berlin–New York, 2000 | DOI | MR | Zbl
[8] W. Herer, Demonstr. Math., 14:3 (1981), 719–724 | MR | Zbl
[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. I, Springer-Verlag, Berli–New York, 1977 | MR | Zbl
[10] Y. Okazaki, Math. Ann., 274:3 (1986), 379–383 | DOI | MR | Zbl
[11] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1975
[12] R. Sztencel, Bull. Acad. Polon. Sci. Sér. Sci. Math., 32:11–12 (1984), 715–719 | MR | Zbl