Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_3_a4, author = {H. F\"uhr and J. Cheshmavar and A. Akbarnia}, title = {On {R-dual} of type {III} in {Hilbert} spaces}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {62--74}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/} }
H. Führ; J. Cheshmavar; A. Akbarnia. On R-dual of type III in Hilbert spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 62-74. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/
[1] P. G. Casazza, G. Kutyniok, M. Lammers, “Duality principles in frame theory”, J. Fourier Anal. Appl., 10:4 (2004), 383–408 | DOI | MR | Zbl
[2] P. G. Casazza, G. Kutyniok, M. Lammers, “Duality principles, localization of frames, and Gabor theory”, SPIE Proceedings in Wavelets XI, no. 5914, 2005
[3] P. G. Casazza, “Modern tools for Weyl-Heisenberg (Gabor) frame theory”, Adv. in Imag. and Electron. Physics, 115 (2001), 1–127 | DOI
[4] O. Christensen, Frame and Bases, An Introductory Course, Birkhäuser, Boston, 2008 | MR
[5] O. Christensen, H. O. Kim, R. Y. Kim, “On the duality principle by Casazza, Kutyniok, and lammers”, J. Fourier Anal. Appl., 17:4 (2011), 640–655 | DOI | MR | Zbl
[6] O. Christensen, X. C. Xiao, Y. C. Zhu, “Characterizing R-duality in Banach spaces”, Acta Math. Sin., Engl. Ser., 1 (2013), 75–84 | DOI | MR | Zbl
[7] Z. Chuang, J. Zhao, “On equivalent conditions of two sequences to be R-dual”, J. Inequal. Appl., 2015:10 (2015), 1–8 | MR
[8] D. T. Stoeva, O. Christensen, “On R-duals and the duality principle in Gabor analysis”, J. Fourier Anal. Appl., 21:2 (2015), 383–400 | DOI | MR | Zbl
[9] E. Kreyszig, Introductory Functionl Analysis with Applications, John Wiley, New York, 1978 | MR