On R-dual of type III in Hilbert spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 62-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following work by Casazza, Kutyniok, and Lammers and its development by Stoeva and Christensen, we provide some novel characterizations of R-dual sequences of type III in Hilbert spaces. We systematically extend the construction procedure by basing it on a choice of an antiunitary involution. For certain classes of R-duals of type III, we derive a representation of the associated frame operator in terms of spectral measures.
Keywords: frames, Riesz sequence, Riesz basis, spectral representation, R-dual of type I, R-dual of type III.
@article{FAA_2021_55_3_a4,
     author = {H. F\"uhr and J. Cheshmavar and A. Akbarnia},
     title = {On {R-dual} of type {III} in {Hilbert} spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--74},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/}
}
TY  - JOUR
AU  - H. Führ
AU  - J. Cheshmavar
AU  - A. Akbarnia
TI  - On R-dual of type III in Hilbert spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 62
EP  - 74
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/
LA  - ru
ID  - FAA_2021_55_3_a4
ER  - 
%0 Journal Article
%A H. Führ
%A J. Cheshmavar
%A A. Akbarnia
%T On R-dual of type III in Hilbert spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 62-74
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/
%G ru
%F FAA_2021_55_3_a4
H. Führ; J. Cheshmavar; A. Akbarnia. On R-dual of type III in Hilbert spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 62-74. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/

[1] P. G. Casazza, G. Kutyniok, M. Lammers, “Duality principles in frame theory”, J. Fourier Anal. Appl., 10:4 (2004), 383–408 | DOI | MR | Zbl

[2] P. G. Casazza, G. Kutyniok, M. Lammers, “Duality principles, localization of frames, and Gabor theory”, SPIE Proceedings in Wavelets XI, no. 5914, 2005

[3] P. G. Casazza, “Modern tools for Weyl-Heisenberg (Gabor) frame theory”, Adv. in Imag. and Electron. Physics, 115 (2001), 1–127 | DOI

[4] O. Christensen, Frame and Bases, An Introductory Course, Birkhäuser, Boston, 2008 | MR

[5] O. Christensen, H. O. Kim, R. Y. Kim, “On the duality principle by Casazza, Kutyniok, and lammers”, J. Fourier Anal. Appl., 17:4 (2011), 640–655 | DOI | MR | Zbl

[6] O. Christensen, X. C. Xiao, Y. C. Zhu, “Characterizing R-duality in Banach spaces”, Acta Math. Sin., Engl. Ser., 1 (2013), 75–84 | DOI | MR | Zbl

[7] Z. Chuang, J. Zhao, “On equivalent conditions of two sequences to be R-dual”, J. Inequal. Appl., 2015:10 (2015), 1–8 | MR

[8] D. T. Stoeva, O. Christensen, “On R-duals and the duality principle in Gabor analysis”, J. Fourier Anal. Appl., 21:2 (2015), 383–400 | DOI | MR | Zbl

[9] E. Kreyszig, Introductory Functionl Analysis with Applications, John Wiley, New York, 1978 | MR