On R-dual of type III in Hilbert spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 62-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Following work by Casazza, Kutyniok, and Lammers and its development by Stoeva and Christensen, we provide some novel characterizations of R-dual sequences of type III in Hilbert spaces. We systematically extend the construction procedure by basing it on a choice of an antiunitary involution. For certain classes of R-duals of type III, we derive a representation of the associated frame operator in terms of spectral measures.
Keywords: frames, Riesz sequence, Riesz basis, spectral representation, R-dual of type I, R-dual of type III.
@article{FAA_2021_55_3_a4,
     author = {H. F\"uhr and J. Cheshmavar and A. Akbarnia},
     title = {On {R-dual} of type {III} in {Hilbert} spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--74},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/}
}
TY  - JOUR
AU  - H. Führ
AU  - J. Cheshmavar
AU  - A. Akbarnia
TI  - On R-dual of type III in Hilbert spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 62
EP  - 74
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/
LA  - ru
ID  - FAA_2021_55_3_a4
ER  - 
%0 Journal Article
%A H. Führ
%A J. Cheshmavar
%A A. Akbarnia
%T On R-dual of type III in Hilbert spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 62-74
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/
%G ru
%F FAA_2021_55_3_a4
H. Führ; J. Cheshmavar; A. Akbarnia. On R-dual of type III in Hilbert spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 62-74. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a4/