Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_3_a3, author = {A. A. Tolstonogov}, title = {Maximal monotonicity of a {Nemytskii} operator}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {51--61}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/} }
A. A. Tolstonogov. Maximal monotonicity of a Nemytskii operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 51-61. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/
[1] V. V. Nemytskii, “Teoremy suschestvovaniya i edinstvennosti dlya nelineinykh integralnykh uravnenii”, Matem. cb., 41:3 (1934), 421–452 | Zbl
[2] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl
[3] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer-Verlag, New-York–Dordrecht–Heidelberg–London, 2010 | MR | Zbl
[4] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Springer-Verlag, Berlin, 1984 | MR | Zbl
[5] R. T. Rockafellar, “Convex integral functions and duality”, Contributions to Nonlinear Functional Analysis, Academic Press, New-York–London, 1971, 215–236 | DOI | MR
[6] H. Attouch, Variational convergence for functions and operators, Pitman (Advanced Publishing Program), Boston–London–Melbourne, 1984 | MR | Zbl
[7] A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., Theory, Meth., Appl., 17:6 (1991), 499–518 | DOI | MR | Zbl
[8] M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time dependent domains”, Set-valued Anal., 5:1 (1997), 57–72 | DOI | MR | Zbl
[9] H. Attouch, “Familles d'operateurs maximaux monotones et mesurabilité”, Ann. Math. Pura Appl., 120:1 (1979), 35–111 | DOI | MR | Zbl
[10] A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-valued Var. Anal., 29:1 (2021), 29–60 | DOI | MR | Zbl
[11] A. A. Tolstonogov, “Compactness of BV solutions of a convex sweeping process of measurable differential inclusion”, J. Convex Anal., 27:2 (2020), 673–695 | MR | Zbl
[12] G. Minty, “Monotone (nonlinear) operators in Hilbert spaces”, Duke Math. J., 29 (1962), 341–346 | DOI | MR | Zbl
[13] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[14] D. Azzam-Laouir, Ch. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problem with continuous bounded variation in time and applications”, Set-valued Var. Anal., 26:3 (2018), 693–728 | DOI | MR | Zbl
[15] D. Azzam-Laouir, I. Boutana-Harid, “Mixed semicontinuous perturbation to an evolution problem with time-dependent maximal monotone operator”, J. Nonlinear and Convex Anal., 20:1 (2018), 39–52 | MR
[16] C. Castaing, C. Godet-Thobie, Truong Xuan Le, “Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator”, Mathematics, 8 (2020), 1395 | DOI