Maximal monotonicity of a Nemytskii operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of maximally monotone operators on a separable Hilbert space is considered. The domains of these operators depend on time ranging over an interval of the real line. The space of square-integrable functions on this interval taking values in the same Hilbert space is also considered. On the space of square-integrable functions a superposition (Nemytskii) operator is constructed based on a family of maximally monotone operators. Under fairly general assumptions, the maximal monotonicity of the Nemytskii operator is proved. This result is applied to the family of maximally monotone operators endowed with a pseudodistance in the sense of A. A. Vladimirov, to the family of subdifferential operators generated by a proper convex lower semicontinuous function depending on time, and to the family of normal cones of a moving closed convex set.
Keywords: maximally monotone operator, subdifferential operator, normal cone.
@article{FAA_2021_55_3_a3,
     author = {A. A. Tolstonogov},
     title = {Maximal monotonicity of a {Nemytskii} operator},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Maximal monotonicity of a Nemytskii operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 51
EP  - 61
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/
LA  - ru
ID  - FAA_2021_55_3_a3
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Maximal monotonicity of a Nemytskii operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 51-61
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/
%G ru
%F FAA_2021_55_3_a3
A. A. Tolstonogov. Maximal monotonicity of a Nemytskii operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 51-61. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a3/

[1] V. V. Nemytskii, “Teoremy suschestvovaniya i edinstvennosti dlya nelineinykh integralnykh uravnenii”, Matem. cb., 41:3 (1934), 421–452 | Zbl

[2] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl

[3] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer-Verlag, New-York–Dordrecht–Heidelberg–London, 2010 | MR | Zbl

[4] J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Springer-Verlag, Berlin, 1984 | MR | Zbl

[5] R. T. Rockafellar, “Convex integral functions and duality”, Contributions to Nonlinear Functional Analysis, Academic Press, New-York–London, 1971, 215–236 | DOI | MR

[6] H. Attouch, Variational convergence for functions and operators, Pitman (Advanced Publishing Program), Boston–London–Melbourne, 1984 | MR | Zbl

[7] A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., Theory, Meth., Appl., 17:6 (1991), 499–518 | DOI | MR | Zbl

[8] M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time dependent domains”, Set-valued Anal., 5:1 (1997), 57–72 | DOI | MR | Zbl

[9] H. Attouch, “Familles d'operateurs maximaux monotones et mesurabilité”, Ann. Math. Pura Appl., 120:1 (1979), 35–111 | DOI | MR | Zbl

[10] A. A. Tolstonogov, “BV continuous solutions of an evolution inclusion with maximal monotone operator and nonconvex-valued perturbation. Existence theorem”, Set-valued Var. Anal., 29:1 (2021), 29–60 | DOI | MR | Zbl

[11] A. A. Tolstonogov, “Compactness of BV solutions of a convex sweeping process of measurable differential inclusion”, J. Convex Anal., 27:2 (2020), 673–695 | MR | Zbl

[12] G. Minty, “Monotone (nonlinear) operators in Hilbert spaces”, Duke Math. J., 29 (1962), 341–346 | DOI | MR | Zbl

[13] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] D. Azzam-Laouir, Ch. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problem with continuous bounded variation in time and applications”, Set-valued Var. Anal., 26:3 (2018), 693–728 | DOI | MR | Zbl

[15] D. Azzam-Laouir, I. Boutana-Harid, “Mixed semicontinuous perturbation to an evolution problem with time-dependent maximal monotone operator”, J. Nonlinear and Convex Anal., 20:1 (2018), 39–52 | MR

[16] C. Castaing, C. Godet-Thobie, Truong Xuan Le, “Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator”, Mathematics, 8 (2020), 1395 | DOI