The Schur--Weyl graph and Thoma's theorem.
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 26-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a graded graph, called the Schur–Weyl graph, which arises naturally when one considers simultaneously the RSK algorithm and the classical duality between representations of the symmetric and general linear groups. As one of the first applications of this graph, we give a new proof of the completeness of the list of discrete indecomposable characters of the infinite symmetric group.
Keywords: Schur–Weyl graph, RSK algorithm, Thoma's theorem, central measures.
@article{FAA_2021_55_3_a1,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {The {Schur--Weyl} graph and {Thoma's} theorem.},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - The Schur--Weyl graph and Thoma's theorem.
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 26
EP  - 41
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/
LA  - ru
ID  - FAA_2021_55_3_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T The Schur--Weyl graph and Thoma's theorem.
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 26-41
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/
%G ru
%F FAA_2021_55_3_a1
A. M. Vershik; N. V. Tsilevich. The Schur--Weyl graph and Thoma's theorem.. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/

[1] A. M. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl

[2] A. M. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Trudy MIAN, 305 (2019), 71–85 | DOI | Zbl

[3] A. M. Vershik, “Kombinatornoe kodirovanie skhem Bernulli i asimptotika tablits Yunga”, Funkts. analiz i ego pril., 54:2 (2020), 3–24 | DOI | MR | Zbl

[4] A. M. Vershik, “Sposob zadaniya tsentralnykh i gibbsovskikh mer i ergodicheskii metod”, Dokl. RAN, 497:1 (2021), 7–11 | DOI | Zbl

[5] A. M. Vershik, “Gruppy, porozhdennye involyutsiyami, numeratsii posetov i tsentralnye mery”, UMN, 76:4 (2021) | Zbl

[6] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR

[7] A. M. Vershik, N. V. Tsilevich, “Ergodichnost i totalnost razbienii, svyazannykh s algoritmom RSK”, Funkts. analiz i ego pril., 55:1 (2021), 33–42 | DOI | MR | Zbl

[8] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisimmetricheskoi gruppy”, Funkts. analiz i ego pril., 28:2 (1994), 31–40 | MR | Zbl

[9] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005

[10] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006

[11] P. Alexandersson, The symmetric functions catalog https://www2.math.upenn.edu/~peal/polynomials/tableauOperators.htm#RSKvsDualRSK

[12] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. in Math., 64:2 (1987), 118–175 | DOI | MR | Zbl

[13] A. Borodin, G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge University Press, Cambridge, 2017 | MR

[14] D. Grinberg, Notes on the combinatorial fundamentals of algebra, arXiv: 2008.09862

[15] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[16] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998, no. 4, 173–199 | DOI | MR | Zbl

[17] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[18] A. Lascoux, B. Leclerc, J.-Y. Thibon, “The plactic monoid”, Algebraic Combinatorics on Words, Chapter 6, Cambridge University Press, Cambridge, 2002

[19] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl

[20] P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl

[21] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl