Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_3_a1, author = {A. M. Vershik and N. V. Tsilevich}, title = {The {Schur--Weyl} graph and {Thoma's} theorem.}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--41}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/} }
A. M. Vershik; N. V. Tsilevich. The Schur--Weyl graph and Thoma's theorem.. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/
[1] A. M. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl
[2] A. M. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Trudy MIAN, 305 (2019), 71–85 | DOI | Zbl
[3] A. M. Vershik, “Kombinatornoe kodirovanie skhem Bernulli i asimptotika tablits Yunga”, Funkts. analiz i ego pril., 54:2 (2020), 3–24 | DOI | MR | Zbl
[4] A. M. Vershik, “Sposob zadaniya tsentralnykh i gibbsovskikh mer i ergodicheskii metod”, Dokl. RAN, 497:1 (2021), 7–11 | DOI | Zbl
[5] A. M. Vershik, “Gruppy, porozhdennye involyutsiyami, numeratsii posetov i tsentralnye mery”, UMN, 76:4 (2021) | Zbl
[6] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR
[7] A. M. Vershik, N. V. Tsilevich, “Ergodichnost i totalnost razbienii, svyazannykh s algoritmom RSK”, Funkts. analiz i ego pril., 55:1 (2021), 33–42 | DOI | MR | Zbl
[8] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisimmetricheskoi gruppy”, Funkts. analiz i ego pril., 28:2 (1994), 31–40 | MR | Zbl
[9] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005
[10] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006
[11] P. Alexandersson, The symmetric functions catalog https://www2.math.upenn.edu/~peal/polynomials/tableauOperators.htm#RSKvsDualRSK
[12] A. Berele, A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. in Math., 64:2 (1987), 118–175 | DOI | MR | Zbl
[13] A. Borodin, G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge University Press, Cambridge, 2017 | MR
[14] D. Grinberg, Notes on the combinatorial fundamentals of algebra, arXiv: 2008.09862
[15] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[16] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, 1998, no. 4, 173–199 | DOI | MR | Zbl
[17] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[18] A. Lascoux, B. Leclerc, J.-Y. Thibon, “The plactic monoid”, Algebraic Combinatorics on Words, Chapter 6, Cambridge University Press, Cambridge, 2002
[19] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[20] P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl
[21] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl