The Schur--Weyl graph and Thoma's theorem.
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 26-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a graded graph, called the Schur–Weyl graph, which arises naturally when one considers simultaneously the RSK algorithm and the classical duality between representations of the symmetric and general linear groups. As one of the first applications of this graph, we give a new proof of the completeness of the list of discrete indecomposable characters of the infinite symmetric group.
Keywords: Schur–Weyl graph, RSK algorithm, Thoma's theorem, central measures.
@article{FAA_2021_55_3_a1,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {The {Schur--Weyl} graph and {Thoma's} theorem.},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - The Schur--Weyl graph and Thoma's theorem.
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 26
EP  - 41
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/
LA  - ru
ID  - FAA_2021_55_3_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T The Schur--Weyl graph and Thoma's theorem.
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 26-41
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/
%G ru
%F FAA_2021_55_3_a1
A. M. Vershik; N. V. Tsilevich. The Schur--Weyl graph and Thoma's theorem.. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a1/