Hyperelliptic Sigma Functions and Adler--Moser Polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a 2004 paper by V. M. Buchstaber and D. V. Leykin, published in “Functional Analysis and Its Applications,” for each $g > 0$, a system of $2g$ multidimensional heat equations in a nonholonomic frame was constructed. The sigma function of the universal hyperelliptic curve of genus $g$ is a solution of this system. In our previous work, published in “Functional Analysis and Its Applications,” explicit expressions for the Schrödinger operators that define the equations of this system were obtained in the hyperelliptic case. In this work we use these results to show that if the initial condition of the system is polynomial, then its solution is uniquely determined up to a constant factor. This has important applications in the well-known problem of series expansion for the hyperelliptic sigma function. We give an explicit description of the connection between such solutions and the well-known Burchnall–Chaundy polynomials and Adler–Moser polynomials. We find a system of linear second-order differential equations that determines the corresponding Adler–Moser polynomial.
Keywords: Schrödinger operator, polynomial dynamical system, heat equation in a nonholonomic frame, differentiation of Abelian functions with respect to parameters, Burchnall–Chaundy equation, Korteweg–de Vries equation.
Mots-clés : polynomial Lie algebra, Adler–Moser polynomial
@article{FAA_2021_55_3_a0,
     author = {V. M. Buchstaber and E. Yu. Bunkova},
     title = {Hyperelliptic {Sigma} {Functions} and {Adler--Moser} {Polynomials}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - E. Yu. Bunkova
TI  - Hyperelliptic Sigma Functions and Adler--Moser Polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 3
EP  - 25
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/
LA  - ru
ID  - FAA_2021_55_3_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A E. Yu. Bunkova
%T Hyperelliptic Sigma Functions and Adler--Moser Polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 3-25
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/
%G ru
%F FAA_2021_55_3_a0
V. M. Buchstaber; E. Yu. Bunkova. Hyperelliptic Sigma Functions and Adler--Moser Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/

[1] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, v. II, Trudy MIAN, no. 294, MAIK, M., 2016, 191–215 | DOI

[2] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-dimensional sigma-functions, arXiv: 1208.0990

[3] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “Sigma-functions: old and new results”, Integrable Systems and Algebraic Geometry, v. 2, LMS Lecture Note Series, no. 459, Cambridge Univ. Press, 2019, 175–214 | MR

[4] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl

[5] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews Math. Math. Physics, 10:2 (1997), 3–120 | MR | Zbl

[6] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl., 179, no. 33, Adv. Math. Sci., Providence, RI, 1997, 1–34 | MR

[7] E. T. Uitekker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatlit, M., 1963; Эдиториал УРСС, М., 2015 | MR

[8] E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Europ. J. Math., 4:1 (2018), 93–112 ; arXiv: 1703.03947 | DOI | MR | Zbl

[9] V. M. Buchstaber, “Multidimensional sigma functions and applications, Victor Enolski (1945–2019)”, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760 | MR

[10] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “$\sigma$-funktsii $(n,s)$-krivykh”, UMN, 54:3(327) (1999), 155–156 | DOI | MR | Zbl

[11] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Nelineinaya dinamika, Sbornik statei, Trudy MIAN, no. 251, Nauka, MAIK, M., 2005, 54–126

[12] J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395

[13] A. Nakayashiki, “Sigma function as tau function”, Int. Math. Res. Not., 2010, no. 3, 373–394 | DOI | MR | Zbl

[14] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl

[15] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl

[16] V. I. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, no. 62, Kluwer Academic Publisher Group, Dordrecht, 1990 | DOI | MR | Zbl

[17] V. M. Bukhshtaber, A. V. Mikhailov, “Beskonechnomernye algebry Li, opredelyaemye prostranstvom simmetricheskikh kvadratov giperellipticheskikh krivykh”, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl

[18] V. M. Bukhshtaber, E. Yu. Bunkova, “Sigma-funktsii i algebry Li operatorov Shrëdingera”, Funkts. analiz i ego pril., 54:4 (2020), 3–16 ; arXiv: 2007.08966 | DOI | MR | Zbl

[19] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, no. 212, Amer. Math. Soc., Providence, RI, 2004, 41–66 | MR | Zbl

[20] A. Nakayashiki, “On algebraic expressions of sigma functions for $(n,s)$-curves”, Asian J. Math., 14:2 (2010), 175–212 ; arXiv: 0803.2083 | DOI | MR | Zbl

[21] M. E. Kazaryan, S. K. Lando, “Kombinatornye resheniya integriruemykh ierarkhii”, UMN, 70:3(423) (2015), 77–106 | DOI | MR | Zbl

[22] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[23] J. L. Burchnall, T. W. Chaundy, “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc., 30:6 (1929–30), 401–414 | MR

[24] A. P. Veselov, R. Willox, “Burchnall–Chaundy polynomials and the Laurent phenomenon”, J. Phys. A: Math. Theor., 48 (2015), 20 ; arXiv: 1407.7394 | DOI | MR | Zbl

[25] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[26] V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4(376) (2007), 153–154 | DOI | MR | Zbl

[27] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[28] R. P. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005

[29] F. G. Frobenius, L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337 | MR

[30] V. M. Buchstaber, E. Yu. Bunkova, Differentiation of genus 4 hyperelliptic functions, arXiv: 1912.11379 | MR

[31] A. du Crest de Villeneuve, “From the Adler–Moser polynomials to the polynomial tau functions of KdV”, J. Integrable Syst., 2:1 (2017), 012 ; arXiv: 1709.05632 | MR