Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_3_a0, author = {V. M. Buchstaber and E. Yu. Bunkova}, title = {Hyperelliptic {Sigma} {Functions} and {Adler--Moser} {Polynomials}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--25}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/} }
TY - JOUR AU - V. M. Buchstaber AU - E. Yu. Bunkova TI - Hyperelliptic Sigma Functions and Adler--Moser Polynomials JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 3 EP - 25 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/ LA - ru ID - FAA_2021_55_3_a0 ER -
V. M. Buchstaber; E. Yu. Bunkova. Hyperelliptic Sigma Functions and Adler--Moser Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a0/
[1] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, v. II, Trudy MIAN, no. 294, MAIK, M., 2016, 191–215 | DOI
[2] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-dimensional sigma-functions, arXiv: 1208.0990
[3] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “Sigma-functions: old and new results”, Integrable Systems and Algebraic Geometry, v. 2, LMS Lecture Note Series, no. 459, Cambridge Univ. Press, 2019, 175–214 | MR
[4] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl
[5] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews Math. Math. Physics, 10:2 (1997), 3–120 | MR | Zbl
[6] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl., 179, no. 33, Adv. Math. Sci., Providence, RI, 1997, 1–34 | MR
[7] E. T. Uitekker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatlit, M., 1963; Эдиториал УРСС, М., 2015 | MR
[8] E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Europ. J. Math., 4:1 (2018), 93–112 ; arXiv: 1703.03947 | DOI | MR | Zbl
[9] V. M. Buchstaber, “Multidimensional sigma functions and applications, Victor Enolski (1945–2019)”, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760 | MR
[10] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “$\sigma$-funktsii $(n,s)$-krivykh”, UMN, 54:3(327) (1999), 155–156 | DOI | MR | Zbl
[11] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Nelineinaya dinamika, Sbornik statei, Trudy MIAN, no. 251, Nauka, MAIK, M., 2005, 54–126
[12] J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395
[13] A. Nakayashiki, “Sigma function as tau function”, Int. Math. Res. Not., 2010, no. 3, 373–394 | DOI | MR | Zbl
[14] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl
[15] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl
[16] V. I. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, no. 62, Kluwer Academic Publisher Group, Dordrecht, 1990 | DOI | MR | Zbl
[17] V. M. Bukhshtaber, A. V. Mikhailov, “Beskonechnomernye algebry Li, opredelyaemye prostranstvom simmetricheskikh kvadratov giperellipticheskikh krivykh”, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl
[18] V. M. Bukhshtaber, E. Yu. Bunkova, “Sigma-funktsii i algebry Li operatorov Shrëdingera”, Funkts. analiz i ego pril., 54:4 (2020), 3–16 ; arXiv: 2007.08966 | DOI | MR | Zbl
[19] V. M. Buchstaber, S. Yu. Shorina, “The $w$-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, no. 212, Amer. Math. Soc., Providence, RI, 2004, 41–66 | MR | Zbl
[20] A. Nakayashiki, “On algebraic expressions of sigma functions for $(n,s)$-curves”, Asian J. Math., 14:2 (2010), 175–212 ; arXiv: 0803.2083 | DOI | MR | Zbl
[21] M. E. Kazaryan, S. K. Lando, “Kombinatornye resheniya integriruemykh ierarkhii”, UMN, 70:3(423) (2015), 77–106 | DOI | MR | Zbl
[22] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl
[23] J. L. Burchnall, T. W. Chaundy, “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc., 30:6 (1929–30), 401–414 | MR
[24] A. P. Veselov, R. Willox, “Burchnall–Chaundy polynomials and the Laurent phenomenon”, J. Phys. A: Math. Theor., 48 (2015), 20 ; arXiv: 1407.7394 | DOI | MR | Zbl
[25] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl
[26] V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4(376) (2007), 153–154 | DOI | MR | Zbl
[27] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl
[28] R. P. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005
[29] F. G. Frobenius, L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337 | MR
[30] V. M. Buchstaber, E. Yu. Bunkova, Differentiation of genus 4 hyperelliptic functions, arXiv: 1912.11379 | MR
[31] A. du Crest de Villeneuve, “From the Adler–Moser polynomials to the polynomial tau functions of KdV”, J. Integrable Syst., 2:1 (2017), 012 ; arXiv: 1709.05632 | MR