Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117

Voir la notice de l'article provenant de la source Math-Net.Ru

e find that, in the critical case $2l={\mathbf N}$, the eigenvalues of the problem $\lambda(-\Delta)^{l}u=Pu$ with the singular measure $P$ supported on a compact Lipschitz surface of an arbitrary dimension in $\R^{\Nb}$ satisfy an asymptotic formula of the same order as in the case of an absolutely continuous measure.
@article{FAA_2021_55_2_a9,
     author = {G. V. Rozenblum and E. M. Shargorodskii},
     title = {Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/}
}
TY  - JOUR
AU  - G. V. Rozenblum
AU  - E. M. Shargorodskii
TI  - Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 113
EP  - 117
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/
LA  - ru
ID  - FAA_2021_55_2_a9
ER  - 
%0 Journal Article
%A G. V. Rozenblum
%A E. M. Shargorodskii
%T Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 113-117
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/
%G ru
%F FAA_2021_55_2_a9
G. V. Rozenblum; E. M. Shargorodskii. Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/