Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117
Voir la notice de l'article provenant de la source Math-Net.Ru
e find that, in the critical case $2l={\mathbf N}$, the eigenvalues of the problem
$\lambda(-\Delta)^{l}u=Pu$ with the singular measure $P$ supported on
a compact Lipschitz surface of an arbitrary dimension in $\R^{\Nb}$
satisfy an asymptotic formula of the same order as in the case of an absolutely
continuous measure.
@article{FAA_2021_55_2_a9,
author = {G. V. Rozenblum and E. M. Shargorodskii},
title = {Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {113--117},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/}
}
TY - JOUR AU - G. V. Rozenblum AU - E. M. Shargorodskii TI - Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 113 EP - 117 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/ LA - ru ID - FAA_2021_55_2_a9 ER -
%0 Journal Article %A G. V. Rozenblum %A E. M. Shargorodskii %T Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 113-117 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/ %G ru %F FAA_2021_55_2_a9
G. V. Rozenblum; E. M. Shargorodskii. Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/