Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

e find that, in the critical case $2l={\mathbf N}$, the eigenvalues of the problem $\lambda(-\Delta)^{l}u=Pu$ with the singular measure $P$ supported on a compact Lipschitz surface of an arbitrary dimension in $\R^{\Nb}$ satisfy an asymptotic formula of the same order as in the case of an absolutely continuous measure.
@article{FAA_2021_55_2_a9,
     author = {G. V. Rozenblum and E. M. Shargorodskii},
     title = {Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/}
}
TY  - JOUR
AU  - G. V. Rozenblum
AU  - E. M. Shargorodskii
TI  - Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 113
EP  - 117
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/
LA  - ru
ID  - FAA_2021_55_2_a9
ER  - 
%0 Journal Article
%A G. V. Rozenblum
%A E. M. Shargorodskii
%T Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 113-117
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/
%G ru
%F FAA_2021_55_2_a9
G. V. Rozenblum; E. M. Shargorodskii. Eigenvalue asymptotics for weighted polyharmonic operator with a singular measure in the critical case. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a9/

[1] M. Sh. Birman, M. Z. Solomyak, Tr. MMO, 27 (1972), 1–52 | MR

[2] M. Birman, A. Laptev, M. Solomyak, Ark. Mat., 35:1 (1997), 87–126 | DOI | MR | Zbl

[3] G. Grubb, Commun. Partial Differ. Equations, 39:3 (2014), 530–573 | DOI | MR | Zbl

[4] M. Karuhanga, E. Shargorodsky, J. Math. Phys., 61:5 (2020), 051509 | DOI | MR | Zbl

[5] R. Lord, F. Sukochev, D. Zanin, J. Funct. Anal, 279:7 (2020), 108664 | DOI | MR | Zbl

[6] V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[7] G. V. Rozenblum, G. M. Tashchiyan, Russian J. Math. Phys, 13:3 (2006), 326–339 | DOI | MR | Zbl

[8] G. V. Rozenblum, G. M. Tashchiyan, Opuscula Math., 38:5 (2018), 733–758 | DOI | MR | Zbl

[9] E. Shargorodsky, Arch. Ration. Mech. Anal., 209:1 (2013), 41–59 | DOI | MR | Zbl

[10] M. Z. Solomyak, Israel. J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl