Homogenization of nonstationary Maxwell system with constant magnetic permeability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 100-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonstationary Maxwell system in $\mathbb{R}^3$ with dielectric permittivity $\eta(\varepsilon^{-1}{\mathbf x})$ and magnetic permeability $\mu$. Here $\eta(\mathbf{x})$ is a positive definite bounded symmetric $(3 \times 3)$-matrix- valued function periodic with respect to some lattice and $\mu$ is a constant positive $3\times 3$ matrix. We obtain approximations for the solutions in the $L_2(\mathbb{R}^3;\mathbb{C}^3)$-norm for a fixed time with error estimates of operator type.
@article{FAA_2021_55_2_a7,
     author = {M. A. Dorodnyi and T. A. Suslina},
     title = {Homogenization of nonstationary {Maxwell} system with constant magnetic permeability},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--106},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/}
}
TY  - JOUR
AU  - M. A. Dorodnyi
AU  - T. A. Suslina
TI  - Homogenization of nonstationary Maxwell system with constant magnetic permeability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 100
EP  - 106
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/
LA  - ru
ID  - FAA_2021_55_2_a7
ER  - 
%0 Journal Article
%A M. A. Dorodnyi
%A T. A. Suslina
%T Homogenization of nonstationary Maxwell system with constant magnetic permeability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 100-106
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/
%G ru
%F FAA_2021_55_2_a7
M. A. Dorodnyi; T. A. Suslina. Homogenization of nonstationary Maxwell system with constant magnetic permeability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 100-106. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/

[1] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[3] M. Sh. Birman, M. Z. Solomyak, UMN, 42:6 (1987), 61–76 | MR | Zbl

[4] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 20:6 (2008), 30–107

[5] Yu. M. Meshkova, J. Spectr. Theory (to appear)

[6] M. A. Dorodnyi, T. A. Suslina, J. Differential Equations, 264:12 (2018), 7463–7522 | DOI | MR | Zbl

[7] M. A. Dorodnyi, T. A. Suslina, Funkts. analiz i ego pril., 54:1 (2020), 69–74 | DOI | MR | Zbl

[8] M. A. Dorodnyi, T. A. Suslina, Algebra i analiz, 32:4 (2020), 3–136 | MR

[9] M. A. Dorodnyi, T. A. Suslina, Matem. zametki, 102:5 (2017), 700–720 | DOI | MR | Zbl

[10] M. A. Dorodnyi, T. A. Suslina, arXiv: 2008.03047