Homogenization of nonstationary Maxwell system with constant magnetic permeability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 100-106
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a nonstationary Maxwell system in $\mathbb{R}^3$ with dielectric
permittivity $\eta(\varepsilon^{-1}{\mathbf x})$ and magnetic permeability $\mu$.
Here $\eta(\mathbf{x})$ is a positive definite bounded symmetric $(3 \times 3)$-matrix- valued
function
periodic with respect to some lattice and
$\mu$ is a constant positive $3\times 3$ matrix. We obtain approximations
for the solutions in the
$L_2(\mathbb{R}^3;\mathbb{C}^3)$-norm for a fixed time with error estimates of operator type.
@article{FAA_2021_55_2_a7,
author = {M. A. Dorodnyi and T. A. Suslina},
title = {Homogenization of nonstationary {Maxwell} system with constant magnetic permeability},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {100--106},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/}
}
TY - JOUR AU - M. A. Dorodnyi AU - T. A. Suslina TI - Homogenization of nonstationary Maxwell system with constant magnetic permeability JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 100 EP - 106 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/ LA - ru ID - FAA_2021_55_2_a7 ER -
%0 Journal Article %A M. A. Dorodnyi %A T. A. Suslina %T Homogenization of nonstationary Maxwell system with constant magnetic permeability %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 100-106 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/ %G ru %F FAA_2021_55_2_a7
M. A. Dorodnyi; T. A. Suslina. Homogenization of nonstationary Maxwell system with constant magnetic permeability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 100-106. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a7/