Universal relations in asymptotic formulas for orthogonal polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 77-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthogonal polynomials $P_{n}(\lambda)$ are oscillating functions of $n$ as $n\to\infty$ for $\lambda$ in the absolutely continuous spectrum of the corresponding Jacobi operator $J$. We show that, irrespective of any specific assumptions on the coefficients of the operator $J$, the amplitude and phase factors in asymptotic formulas for $P_{n}(\lambda)$ are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator $J$.
@article{FAA_2021_55_2_a6,
     author = {D. R. Yafaev},
     title = {Universal relations in asymptotic formulas for orthogonal polynomials},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--99},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Universal relations in asymptotic formulas for orthogonal polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 77
EP  - 99
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/
LA  - ru
ID  - FAA_2021_55_2_a6
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Universal relations in asymptotic formulas for orthogonal polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 77-99
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/
%G ru
%F FAA_2021_55_2_a6
D. R. Yafaev. Universal relations in asymptotic formulas for orthogonal polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 77-99. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/