Universal relations in asymptotic formulas for orthogonal polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 77-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthogonal polynomials $P_{n}(\lambda)$ are oscillating functions of $n$ as $n\to\infty$ for $\lambda$ in the absolutely continuous spectrum of the corresponding Jacobi operator $J$. We show that, irrespective of any specific assumptions on the coefficients of the operator $J$, the amplitude and phase factors in asymptotic formulas for $P_{n}(\lambda)$ are linked by certain universal relations found in the paper. Our proofs rely on the study of a time-dependent evolution generated by suitable functions of the operator $J$.
@article{FAA_2021_55_2_a6,
     author = {D. R. Yafaev},
     title = {Universal relations in asymptotic formulas for orthogonal polynomials},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--99},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Universal relations in asymptotic formulas for orthogonal polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 77
EP  - 99
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/
LA  - ru
ID  - FAA_2021_55_2_a6
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Universal relations in asymptotic formulas for orthogonal polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 77-99
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/
%G ru
%F FAA_2021_55_2_a6
D. R. Yafaev. Universal relations in asymptotic formulas for orthogonal polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 77-99. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a6/

[1] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961

[2] S. Bernstein, “Sur les polynômes orthogonaux relatifs à un segment fini”, J. de Math., 9 (1930), 127–177 ; 10 (1931), 219–286 | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel i integralnykh operatorov”, UMN, 32:1(193) (1977), 17–84 | MR | Zbl

[4] M. Sh. Birman, G. E. Karadzhov, M. Z. Solomyak, “Boundedness conditions and spectrum estimates for the operators $b(X) a(D)$ and their analogs”, Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 85–106 | MR

[5] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, 2, McGraw-Hill, New York–Toronto–London, 1953 | MR

[6] * A. Foulquié Moreno, A. Martínez-Finkelshtein, V. L. Sousa, “Asymptotics of orthogonal polynomials for a weight with a jump on $[-1,1]$”, Constr. Approx., 33:2 (2011), 219–263 | DOI | MR | Zbl

[7] G. Freud, “On polynomial approximation with the weight $\exp(-x^{2k}\!/2)$”, Acta Math. Acad. Sci. Hungar., 24 (1973), 363–371 | DOI | MR | Zbl

[8] J. Janas, S. Naboko, “Jacobi matrices with power-like weights—grouping in blocks approach”, J. Funct. Anal., 166:2 (1999), 218–243 | DOI | MR | Zbl

[9] J. Janas, S. Naboko, E. Sheronova, “Asymptotic behavior of generalized eigenvectors of Jacobi matrices in the critical ("double root") case”, Z. Anal. Anwend., 28:4 (2009), 411–430 | DOI | MR | Zbl

[10] T. Kriecherbauer, K. T-R McLaughlin, “Strong asymptotics of polynomials orthogonal with respect to Freud weights”, Internat. Math. Res. Notices, 1999, no. 6, 299–333 | DOI | MR | Zbl

[11] D. Lubinsky, H. Mhaskar, E. Saff, “A proof of Freud's conjecture for exponential weights”, Constr. Approx., 4:1 (1988), 65–83 | DOI | MR | Zbl

[12] A. P. Magnus, “On Freud's equations for exponential weights. Papers dedicated to the memory of Géza Freud”, J. Approx. Theory, 46:1 (1986), 65–99 | DOI | MR | Zbl

[13] A. Máté, P. Nevai, V. Totik, “Asymptotics for orthogonal polynomials defined by a recurrence relation”, Constr. Approx., 1:3 (1985), 231–248 | DOI | MR | Zbl

[14] P. G. Nevai, “Orthogonal Polynomials”, Mem. Amer. Math. Soc., 18:213 (1979), Providence, RI | MR

[15] P. G. Nevai, “Asymptotics for orthogonal polynomials associated with $\exp(-x^4)$”, SIAM J. Math. Anal., 15:6 (1984), 1171–1187 | DOI | MR

[16] E. A. Rakhmanov, Strong Asymptotics for Orthogonal Polynomials, Lecture Notes Math., 1550, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[17] K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics, 217, Springer, Cham, 2017 | DOI | MR

[18] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1978 | MR

[19] D. R. Yafaev, “O spektre vozmuschennogo poligarmonicheskogo operatora”, Problemy matem. fiziki, 5 (1971), 122–128 | Zbl

[20] D. R. Yafaev, “Spectral and scattering theory for differential and Hankel operators”, Adv. Math., 308 (2017), 713–766 | DOI | MR | Zbl

[21] D. R. Yafaev, “Semiclassical asymptotic behavior of orthogonal polynomials”, Lett. Math. Phys., 110 (2020), 2857–2891 | DOI | MR | Zbl

[22] D. R. Yafaev, “Asymptotic behavior of orthogonal polynomials without the Carleman condition”, J. Funct. Anal., 279:7 (2020), 108648 | DOI | MR | Zbl

[23] D. R. Yafaev, “Scattering theory for Laguerre operators”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS press, 2021, 457–478 | DOI | MR | Zbl

[24] D. R. Yafaev, “Asymptotic behavior of orthogonal polynomials. Singular critical case”, J. Approx. Theory, 262 (2021), 105506 | DOI | MR | Zbl