Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_2_a5, author = {W. D. Evans and D. E. Edmunds and R. T. Lewis}, title = {Inequalities of {Rellich} type}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {65--76}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a5/} }
W. D. Evans; D. E. Edmunds; R. T. Lewis. Inequalities of Rellich type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a5/
[1] A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Springer, Cham, 2015 | MR | Zbl
[2] R. Baňuelos, G. Wang, “Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations”, Duke Math. J., 80:3 (1995), 575–600 | MR
[3] E. B. Davies, “Some norm bounds and quadratic form inequalities for Schrödinger operators. II”, J. Operator Theory, 12:1 (1984), 177–196 | MR | Zbl
[4] E. B. Davies, A. M. Hinz, “Explicit constants for Rellich inequalities in $L_p(\Omega)$”, Math. Z., 227:3 (1998), 511–523 | DOI | MR | Zbl
[5] D. E. Edmunds, W. D. Evans, “The Rellich inequality”, Rev. Mat. Complut., 29:3 (2016), 511–530 | DOI | MR | Zbl
[6] D. E. Edmunds, W. D. Evans, Elliptic Differential Operators and Spectral Analysis, Springer Monographs in Mathematics, Springer, Cham, 2018 | DOI | MR | Zbl
[7] D. E. Edmunds, W. D. Evans, R. T. Lewis, “Fractional inequalities of Rellich type” (to appear)
[8] W. D. Evans, R. T. Lewis, “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR | Zbl
[9] R. L. Frank, E. Lieb, R. Seiringer, “Hardy–Lieb-Thirring inequalities for fractional Schrödinger operators”, J. Amer. Math. Soc., 21:4 (2008), 925–950 | DOI | MR | Zbl
[10] I. Herbst, “Spectral theory of the operator $(p^2 +m^2)^{1/2}-Ze^2\!/r$”, Comm. Math. Phys., 53 (1977), 285–294 | DOI | MR | Zbl
[11] T. Iwaniec, G. Martin, “Riesz transforms and related singular integrals”, J. Reine Angew. Math., 473 (1996), 25–57 | MR | Zbl
[12] M. Loss, C. Sloane, “Hardy inequalities for fractional integrals on general domains”, J. Funct. Anal., 259:6 (2010), 1369–1379 | DOI | MR | Zbl
[13] M. P. Owen, “The Hardy–Rellich inequality for polyharmonic operators”, Proc. Roy. Soc. Edinburgh, A, 129:4 (1999), 825–839 | DOI | MR | Zbl
[14] J. Tidblom, “A geometric version of Hardy's inequality in $ W_0^{1,p}(\Omega)$”, Proc. Amer. Math. Soc., 132:8 (2004), 2265–2271 | DOI | MR | Zbl