Hardy inequality for antisymmetric functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hardy inequalities on antisymmetric functions. Such inequalities have substantially better constants. We show that they depend on the lowest degree of an antisymmetric harmonic polynomial. This allows us to obtain some Caffarelli–Kohn–Nirenberg-type inequalities that are useful for studying spectral properties of Schrödinger operators.
@article{FAA_2021_55_2_a4,
     author = {T. Hoffmann-Ostenhof and A. A. Laptev},
     title = {Hardy inequality for antisymmetric functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/}
}
TY  - JOUR
AU  - T. Hoffmann-Ostenhof
AU  - A. A. Laptev
TI  - Hardy inequality for antisymmetric functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 55
EP  - 64
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/
LA  - ru
ID  - FAA_2021_55_2_a4
ER  - 
%0 Journal Article
%A T. Hoffmann-Ostenhof
%A A. A. Laptev
%T Hardy inequality for antisymmetric functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 55-64
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/
%G ru
%F FAA_2021_55_2_a4
T. Hoffmann-Ostenhof; A. A. Laptev. Hardy inequality for antisymmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/