Hardy inequality for antisymmetric functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Hardy inequalities on antisymmetric functions. Such inequalities have
substantially better constants. We show that they depend on the lowest degree of an antisymmetric
harmonic polynomial.
This allows us to obtain some Caffarelli–Kohn–Nirenberg-type inequalities that are useful for studying
spectral properties of Schrödinger operators.
@article{FAA_2021_55_2_a4,
author = {T. Hoffmann-Ostenhof and A. A. Laptev},
title = {Hardy inequality for antisymmetric functions},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {55--64},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/}
}
T. Hoffmann-Ostenhof; A. A. Laptev. Hardy inequality for antisymmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/