Hardy inequality for antisymmetric functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hardy inequalities on antisymmetric functions. Such inequalities have substantially better constants. We show that they depend on the lowest degree of an antisymmetric harmonic polynomial. This allows us to obtain some Caffarelli–Kohn–Nirenberg-type inequalities that are useful for studying spectral properties of Schrödinger operators.
@article{FAA_2021_55_2_a4,
     author = {T. Hoffmann-Ostenhof and A. A. Laptev},
     title = {Hardy inequality for antisymmetric functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/}
}
TY  - JOUR
AU  - T. Hoffmann-Ostenhof
AU  - A. A. Laptev
TI  - Hardy inequality for antisymmetric functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 55
EP  - 64
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/
LA  - ru
ID  - FAA_2021_55_2_a4
ER  - 
%0 Journal Article
%A T. Hoffmann-Ostenhof
%A A. A. Laptev
%T Hardy inequality for antisymmetric functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 55-64
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/
%G ru
%F FAA_2021_55_2_a4
T. Hoffmann-Ostenhof; A. A. Laptev. Hardy inequality for antisymmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/

[1] A. A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Cham, 2015 | DOI | MR | Zbl

[2] A. A. Balinsky, W. D. Evans, R. T. Lewis, “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489 | DOI | MR | Zbl

[3] M. Sh. Birman, “O spektre singulyarnykh zadach”, Matem. sb., 55(97):2 (1961), 125–174 | Zbl

[4] L. Caffarelli, R. Kohn, L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275 | MR | Zbl

[5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[6] E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[7] T. Ekholm, R. Frank, “On Lieb–Thirring inequalities for Schrodinger operators with virtual level”, Comm. Math. Phys., 264:3 (2006), 725–740 | DOI | MR | Zbl

[8] E. Gagliardo, “Ulteriori proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat., 8 (1959), 24–51 | MR | Zbl

[9] Yu. V. Egorov, V. A. Kondrat'ev, On Spectral Theory of Elliptic Operators, Operator Theory: Advances and Applications, 89, Birkhäuser, Basel, 1996 | MR | Zbl

[10] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, “Absence of an $L^2$-eigenfucntion at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector”, J. Phys. A, 17 (1984), 3321–3325 | DOI | MR | Zbl

[11] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, A. Laptev, J. Tidblom, “Many-particle Hardy inequalities”, J. Lond. Math. Soc. (2), 77:1 (2008), 99–114 | DOI | MR

[12] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, H. Stremnitzer, “Local properties of Coulombic wave functions”, Comm. Math. Phys., 163:1 (1994), 185–213 | DOI | MR

[13] M. Hutter, On representing (anti)symmetric functions, arXiv: 2007.15298

[14] E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[15] G. Lioni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 181, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR

[16] A. Laptev, Yu. Netrusov, “On the negative eigenvalues of a class of Schrodinger operators”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 173–186 | MR | Zbl

[17] A. Laptev, T. Weidl, “Hardy Inequalities for Magnetic Dirichlet Forms”, Operator Theory: Advances and Applications, 108, Birkhäuser, Basel, 1999, 299–305 | MR

[18] D. Lundholm, “Geometric extensions of many-particle Hardy inequalities”, J. Phys. A: Math. Theor., 48:17 (2015), 175203 | DOI | MR | Zbl

[19] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[20] A. I. Nazarov, “Hardy–Sobolev inequalities in a cone”, J. Math. Sci., 132:4 (2006), 419–427 | DOI | MR

[21] L. Nirenberg, “On elliptic partial differential equations”, Ann. Squola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162 | MR | Zbl

[22] M. Z. Solomyak, “A remark on the Hardy inequalities”, Integral Equations Operator Theory, 19:1 (1994), 120–124 | DOI | MR | Zbl

[23] M. Z. Solomyak, “Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl

[24] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372 | DOI | MR | Zbl