Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_2_a4, author = {T. Hoffmann-Ostenhof and A. A. Laptev}, title = {Hardy inequality for antisymmetric functions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {55--64}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/} }
T. Hoffmann-Ostenhof; A. A. Laptev. Hardy inequality for antisymmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a4/
[1] A. A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Cham, 2015 | DOI | MR | Zbl
[2] A. A. Balinsky, W. D. Evans, R. T. Lewis, “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489 | DOI | MR | Zbl
[3] M. Sh. Birman, “O spektre singulyarnykh zadach”, Matem. sb., 55(97):2 (1961), 125–174 | Zbl
[4] L. Caffarelli, R. Kohn, L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275 | MR | Zbl
[5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[6] E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[7] T. Ekholm, R. Frank, “On Lieb–Thirring inequalities for Schrodinger operators with virtual level”, Comm. Math. Phys., 264:3 (2006), 725–740 | DOI | MR | Zbl
[8] E. Gagliardo, “Ulteriori proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat., 8 (1959), 24–51 | MR | Zbl
[9] Yu. V. Egorov, V. A. Kondrat'ev, On Spectral Theory of Elliptic Operators, Operator Theory: Advances and Applications, 89, Birkhäuser, Basel, 1996 | MR | Zbl
[10] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, “Absence of an $L^2$-eigenfucntion at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector”, J. Phys. A, 17 (1984), 3321–3325 | DOI | MR | Zbl
[11] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, A. Laptev, J. Tidblom, “Many-particle Hardy inequalities”, J. Lond. Math. Soc. (2), 77:1 (2008), 99–114 | DOI | MR
[12] M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, H. Stremnitzer, “Local properties of Coulombic wave functions”, Comm. Math. Phys., 163:1 (1994), 185–213 | DOI | MR
[13] M. Hutter, On representing (anti)symmetric functions, arXiv: 2007.15298
[14] E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[15] G. Lioni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 181, Amer. Math. Soc., Providence, RI, 2017 | DOI | MR
[16] A. Laptev, Yu. Netrusov, “On the negative eigenvalues of a class of Schrodinger operators”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 173–186 | MR | Zbl
[17] A. Laptev, T. Weidl, “Hardy Inequalities for Magnetic Dirichlet Forms”, Operator Theory: Advances and Applications, 108, Birkhäuser, Basel, 1999, 299–305 | MR
[18] D. Lundholm, “Geometric extensions of many-particle Hardy inequalities”, J. Phys. A: Math. Theor., 48:17 (2015), 175203 | DOI | MR | Zbl
[19] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[20] A. I. Nazarov, “Hardy–Sobolev inequalities in a cone”, J. Math. Sci., 132:4 (2006), 419–427 | DOI | MR
[21] L. Nirenberg, “On elliptic partial differential equations”, Ann. Squola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162 | MR | Zbl
[22] M. Z. Solomyak, “A remark on the Hardy inequalities”, Integral Equations Operator Theory, 19:1 (1994), 120–124 | DOI | MR | Zbl
[23] M. Z. Solomyak, “Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl
[24] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372 | DOI | MR | Zbl