On the spectrum of the one-particle density matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 44-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-particle density matrix $\gamma(x, y)$ is one of the key objects in quantum-mechanical approximation schemes. The self-adjoint operator $\Gamma$ with kernel $\gamma(x, y)$ is trace class, but no sharp results on the decay of its eigenvalues were previously known. The note presents the asymptotic formula $\lambda_k \sim (Ak)^{-8/3}$, $A \ge 0$, as $k\to\infty$ for the eigenvalues $\lambda_k$ of the operator $\Gamma$ and describes the main ideas of the proof.
@article{FAA_2021_55_2_a3,
     author = {A. V. Sobolev},
     title = {On the spectrum of the one-particle density matrix},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/}
}
TY  - JOUR
AU  - A. V. Sobolev
TI  - On the spectrum of the one-particle density matrix
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 44
EP  - 54
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/
LA  - ru
ID  - FAA_2021_55_2_a3
ER  - 
%0 Journal Article
%A A. V. Sobolev
%T On the spectrum of the one-particle density matrix
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 44-54
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/
%G ru
%F FAA_2021_55_2_a3
A. V. Sobolev. On the spectrum of the one-particle density matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 44-54. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/

[1] A. B. Aleksandrov, S. Janson, V. V. Peller, R. Rochberg, “An interesting class of operators with unusual Schatten-von Neumann behavior”, Function spaces, interpolation theory and related topics, Lund, 2000, de Gruyter, Berlin, 2002, 61–149 | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Trudy X letnei matematicheskoi shkoly, In-t Matematiki AN USSR, Kiev, 1974, 5–189

[3] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR. Ser. matem., 34:5 (1970), 1142–1158

[4] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami”, Vestnik LGU, Ser. mat., mekh., astronom., 1977, no. 13, 13–21, 169 | Zbl

[5] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN, 32:1(193) (1977), 17–84 | MR | Zbl

[6] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. II”, Vestnik LGU, Ser. mat., mekh., astronom., 1979, no. 13, 5–10, 121 | Zbl

[7] M. Sh. Birman, M. Z. Solomyak, “Kompaktnye operatory so stepennoi asimptotikoi singulyarnykh chisel”, Zap. nauchn. sem. LOMI, 126, 1983, 21–30 | Zbl

[8] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, S.-Peterburg, 2010

[9] J. Cioslowski, “Off-diagonal derivative discontinuities in the reduced density matrices of electronic systems”, J. Chem. Phys., 153:15 (2020), 154108 | DOI

[10] A. Coleman, V. Yukalov, Reduced Density Matrices, Lecture Notes in Chemistry, 72, Springer-Verlag, Berlin–Heidelberg, 2000 | DOI | MR | Zbl

[11] J. M. Combes, L. Thomas, “Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators”, Comm. Math. Phys., 34 (1973), 251–270 | DOI | MR | Zbl

[12] P. Deift, W. Hunziker, B. Simon, E. Vock, “Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. IV”, Comm. Math. Phys., 64:1 (1978/79), 1–34 | DOI | MR | Zbl

[13] S. Fournais, T. Ø. Sørensen, “Pointwise estimates on derivatives of Coulombic wave functions and their electron densities”, J. Reine Angew. Math. (to appear) | MR

[14] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T. Ø. Sørensen, “Sharp regularity results for Coulombic many-electron wave functions”, Comm. Math. Phys., 255:1 (2005), 183–227 | DOI | MR | Zbl

[15] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T. Ø. Sørensen, “Analytic structure of many-body Coulombic wave functions”, Comm. Math. Phys., 289:1 (2009), 291–310 | DOI | MR | Zbl

[16] G. Friesecke, “On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459:2029 (2003), 47–52 | DOI | MR | Zbl

[17] R. Froese, I. Herbst, “Exponential bounds and absence of positive eigenvalues for $N$-body Schrödinger operators”, Comm. Math. Phys., 87:3 (1982/83), 429–447 | DOI | MR | Zbl

[18] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, H. Stremnitzer, “Local properties of Coulombic wave functions”, Comm. Math. Phys., 163:1 (1994), 185–215 | DOI | MR | Zbl

[19] T. Kato, “On the eigenfunctions of many-particle systems in quantum mechanics”, Comm. Pure Appl. Math., 10 (1957), 151–177 | DOI | MR | Zbl

[20] M. Lewin, E. H. Lieb, R. Seiringer, Universal Functionals in Density Functional Theory, arXiv: 1912.10424

[21] E. H. Lieb, R. Seiringer, The stability of matter in quantum mechanics, Cambridge University Press, Cambridge, 2010 | MR

[22] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 2, Fourier Analysis, Self-Adjointness, Academic Press, New York–London, 1975 | MR | Zbl

[23] B. Simon, Exponential decay of quantum wave functions http://www.math.caltech.edu/simon/Selecta/ExponentialDecay.pdf

[24] A. V. Sobolev, “Eigenvalue estimates for the one-particle density matrix”, J. Spectral Theory (to appear) | MR

[25] A. V. Sobolev, Eigenvalue asymptotics for the one-particle density matrix, arXiv: 2103.11896