On the spectrum of the one-particle density matrix
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-particle density matrix $\gamma(x, y)$ is one of the key objects in quantum-mechanical approximation schemes. The self-adjoint operator $\Gamma$ with kernel $\gamma(x, y)$ is trace class, but no sharp results on the decay of its eigenvalues were previously known. The note presents the asymptotic formula $\lambda_k \sim (Ak)^{-8/3}$, $A \ge 0$, as $k\to\infty$ for the eigenvalues $\lambda_k$ of the operator $\Gamma$ and describes the main ideas of the proof.
@article{FAA_2021_55_2_a3,
     author = {A. V. Sobolev},
     title = {On the spectrum of the one-particle density matrix},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/}
}
TY  - JOUR
AU  - A. V. Sobolev
TI  - On the spectrum of the one-particle density matrix
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 44
EP  - 54
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/
LA  - ru
ID  - FAA_2021_55_2_a3
ER  - 
%0 Journal Article
%A A. V. Sobolev
%T On the spectrum of the one-particle density matrix
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 44-54
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/
%G ru
%F FAA_2021_55_2_a3
A. V. Sobolev. On the spectrum of the one-particle density matrix. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 44-54. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a3/