Two consequences of Davies's Hardy inequality
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 118-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Davies' version of the Hardy inequality gives a lower bound for the Dirichlet integral of a function vanishing on the boundary of a domain in terms of the integral of the squared function with a weight containing the averaged distance to the boundary. This inequality is applied to easily derive two classical results of spectral theory, E. Lieb's inequality for the first eigenvalue of the Dirichlet Laplacian and G. Rozenblum's estimate for the spectral counting function of the Laplacian in an unbounded domain in terms of the number of disjoint balls of preset size whose intersection with the domain is large enough.
@article{FAA_2021_55_2_a10,
     author = {R. L. Frank and S. Larson},
     title = {Two consequences of {Davies's} {Hardy} inequality},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {118--121},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a10/}
}
TY  - JOUR
AU  - R. L. Frank
AU  - S. Larson
TI  - Two consequences of Davies's Hardy inequality
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 118
EP  - 121
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a10/
LA  - ru
ID  - FAA_2021_55_2_a10
ER  - 
%0 Journal Article
%A R. L. Frank
%A S. Larson
%T Two consequences of Davies's Hardy inequality
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 118-121
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a10/
%G ru
%F FAA_2021_55_2_a10
R. L. Frank; S. Larson. Two consequences of Davies's Hardy inequality. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 118-121. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a10/

[1] E. B. Davies, J. Operator Theory, 12:1 (1984), 177–196 | MR | Zbl

[2] C. L. Fefferman, Bull. Amer. Math. Soc. (N.S.), 9:2 (1983), 129–206 | DOI | MR | Zbl

[3] R. L. Frank, arXiv: 2007.09326 | MR

[4] R. L. Frank, S. Larson, J. Reine Angew. Math., 766 (2020), 195–228 | DOI | MR | Zbl

[5] R. L. Frank, M. Loss, J. Math. Pures Appl., 97:1 (2012), 39–54 | DOI | MR | Zbl

[6] S. Larson, J. Spectr. Theory, 9:3 (2019), 857–895 | DOI | MR | Zbl

[7] E. H. Lieb, Invent. Math., 74:3 (1983), 441–448 | DOI | MR | Zbl

[8] V. Maz'ya, M. Shubin, Lett. Math. Phys., 74:2 (2005), 135–151 | DOI | MR | Zbl

[9] G. V. Rozenblyum, Matem. sb., 89(131):2 (1972), 234–247