Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_2_a1, author = {E. McDonald and T. T. Scheckter and F. A. Sukochev}, title = {Estimates for {Schur} {Multipliers} and {Double} {Operator} {Integrals---A} {Wavelet} {Approach}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {5--20}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/} }
TY - JOUR AU - E. McDonald AU - T. T. Scheckter AU - F. A. Sukochev TI - Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 5 EP - 20 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/ LA - ru ID - FAA_2021_55_2_a1 ER -
%0 Journal Article %A E. McDonald %A T. T. Scheckter %A F. A. Sukochev %T Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 5-20 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/ %G ru %F FAA_2021_55_2_a1
E. McDonald; T. T. Scheckter; F. A. Sukochev. Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/
[1] A. B. Aleksandrov, V. V. Peller, “Hankel and Toeplitz–Schur multipliers”, Math. Ann., 324:2 (2002), 277–327 | DOI | MR | Zbl
[2] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsessy, Problemy matematicheskoi fiziki, 1, Izd-vo LGU, L., 1966, 33–67
[3] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Problemy matematicheskoi fiziki, 2, Izd-vo LGU, L., 1967, 26–66 | MR
[4] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa. III, Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Problemy matematicheskoi fiziki, 6, Izd-vo LGU, L., 1973, 27–53
[5] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN, 32:1(193) (1977), 17–84 | MR | Zbl
[6] M. Š. Birman, M. Z. Solomyak, “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47:2 (2003), 131–168 | DOI | MR | Zbl
[7] C. Brislawn, “Kernels of trace class operators”, Proc. Amer. Math. Soc., 104:4 (1988), 1181–1190 | DOI | MR | Zbl
[8] A. Cohen, “Numerical analysis of wavelet methods”, Studies in Mathematics and its Applications, 32, North-Holland Publishing Co., Amsterdam, 2003 | MR | Zbl
[9] Yu. L. Daletskii, S. G. Krein, “Formuly differentsirovaniya po parametru funktsii ermitovykh operatorov”, Dokl. AN SSSR, 76:1 (1951), 13–16 | Zbl
[10] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i prilozheniya k teorii vozmuschenii”, Trudy seminara po funktsionalnomu analizu, v. 1, Voronezh. gos. un-t, Voronezh, 1956, 81–105
[11] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41:7 (1988), 909–996 | DOI | MR | Zbl
[12] R. A. DeVore, “Nonlinear approximation”, Acta Numer., 7 (1998), 51–150 | DOI | MR | Zbl
[13] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[14] D. Elstner, A. Pietsch, “Eigenvalues of integral operators. III”, Math. Nachr., 132 (1987), 191–205 | DOI | MR | Zbl
[15] L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics, 250, Springer-Verlag, New York, 2014 | MR | Zbl
[16] E. Hernández, G. Weiss, “A First Course on Wavelets”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996 | MR | Zbl
[17] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, “Analysis in Banach spaces. Vol. I. Martingales and Littlewood–Paley theory”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, Cham, 2016 | MR | Zbl
[18] J. Lindenstrauss, L. Tzafriri, “Classical {B}anach spaces. II”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[19] E. McDonald, F. A. Sukochev, Lipschitz estimates in quasi-Banach Schatten ideals, arXiv: 2009.08069 | MR
[20] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki, 1985/86, Astérisque, 1987, no. 145–146, 209–223 | MR | Zbl
[21] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[22] L. Z. Peng, “Wavelets and paracommutators”, Ark. Mat., 31:1 (1993), 83–99 | DOI | MR | Zbl
[23] A. Pietsch, “Eigenvalues of integral operators. I”, Math. Ann., 247:2 (1980), 169–178 | DOI | MR | Zbl
[24] A. Pietsch, “Eigenvalues of integral operators. II”, Math. Ann., 262:3 (1983), 343–376 | DOI | MR | Zbl
[25] Y. Sawano, “Theory of Besov Spaces”, Developments in Mathematics, 56, Springer, Singapore, 2018 | DOI | MR | Zbl
[26] M. Sugimoto, “$L^p$-boundedness of pseudodifferential operators satisfying Besov estimates. I”, J. Math. Soc. Japan, 40:1 (1988), 105–122 | DOI | MR | Zbl