Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the work of Birman and Solomyak on the singular numbers of integral operators from the point of view of modern approximation theory, in particular, with the use of wavelet techniques. We are able to provide a simple proof of norm estimates for integral operators with kernel in $B^{1/p-1/2}_{p,p}(\mathbb R,L_2(\mathbb R))$. This recovers, extends, and sheds new light on a theorem of Birman and Solomyak. We also use these techniques to provide a simple proof of Schur multiplier bounds for double operator integrals with bounded symbol in $B^{1/p-1/2}_{2p/(2-p),p}(\mathbb R,L_\infty(\mathbb R))$, which extends Birman and Solomyak's result to symbols without compact domain.
@article{FAA_2021_55_2_a1,
     author = {E. McDonald and T. T. Scheckter and F. A. Sukochev},
     title = {Estimates for {Schur} {Multipliers} and {Double} {Operator} {Integrals---A} {Wavelet} {Approach}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/}
}
TY  - JOUR
AU  - E. McDonald
AU  - T. T. Scheckter
AU  - F. A. Sukochev
TI  - Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 5
EP  - 20
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/
LA  - ru
ID  - FAA_2021_55_2_a1
ER  - 
%0 Journal Article
%A E. McDonald
%A T. T. Scheckter
%A F. A. Sukochev
%T Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 5-20
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/
%G ru
%F FAA_2021_55_2_a1
E. McDonald; T. T. Scheckter; F. A. Sukochev. Estimates for Schur Multipliers and Double Operator Integrals---A Wavelet Approach. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a1/

[1] A. B. Aleksandrov, V. V. Peller, “Hankel and Toeplitz–Schur multipliers”, Math. Ann., 324:2 (2002), 277–327 | DOI | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsessy, Problemy matematicheskoi fiziki, 1, Izd-vo LGU, L., 1966, 33–67

[3] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Problemy matematicheskoi fiziki, 2, Izd-vo LGU, L., 1967, 26–66 | MR

[4] M. Sh. Birman, M. Z. Solomyak, “Dvoinye integraly Stiltesa. III, Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Problemy matematicheskoi fiziki, 6, Izd-vo LGU, L., 1973, 27–53

[5] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, UMN, 32:1(193) (1977), 17–84 | MR | Zbl

[6] M. Š. Birman, M. Z. Solomyak, “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47:2 (2003), 131–168 | DOI | MR | Zbl

[7] C. Brislawn, “Kernels of trace class operators”, Proc. Amer. Math. Soc., 104:4 (1988), 1181–1190 | DOI | MR | Zbl

[8] A. Cohen, “Numerical analysis of wavelet methods”, Studies in Mathematics and its Applications, 32, North-Holland Publishing Co., Amsterdam, 2003 | MR | Zbl

[9] Yu. L. Daletskii, S. G. Krein, “Formuly differentsirovaniya po parametru funktsii ermitovykh operatorov”, Dokl. AN SSSR, 76:1 (1951), 13–16 | Zbl

[10] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i prilozheniya k teorii vozmuschenii”, Trudy seminara po funktsionalnomu analizu, v. 1, Voronezh. gos. un-t, Voronezh, 1956, 81–105

[11] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41:7 (1988), 909–996 | DOI | MR | Zbl

[12] R. A. DeVore, “Nonlinear approximation”, Acta Numer., 7 (1998), 51–150 | DOI | MR | Zbl

[13] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[14] D. Elstner, A. Pietsch, “Eigenvalues of integral operators. III”, Math. Nachr., 132 (1987), 191–205 | DOI | MR | Zbl

[15] L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics, 250, Springer-Verlag, New York, 2014 | MR | Zbl

[16] E. Hernández, G. Weiss, “A First Course on Wavelets”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996 | MR | Zbl

[17] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, “Analysis in Banach spaces. Vol. I. Martingales and Littlewood–Paley theory”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, Cham, 2016 | MR | Zbl

[18] J. Lindenstrauss, L. Tzafriri, “Classical {B}anach spaces. II”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[19] E. McDonald, F. A. Sukochev, Lipschitz estimates in quasi-Banach Schatten ideals, arXiv: 2009.08069 | MR

[20] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki, 1985/86, Astérisque, 1987, no. 145–146, 209–223 | MR | Zbl

[21] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[22] L. Z. Peng, “Wavelets and paracommutators”, Ark. Mat., 31:1 (1993), 83–99 | DOI | MR | Zbl

[23] A. Pietsch, “Eigenvalues of integral operators. I”, Math. Ann., 247:2 (1980), 169–178 | DOI | MR | Zbl

[24] A. Pietsch, “Eigenvalues of integral operators. II”, Math. Ann., 262:3 (1983), 343–376 | DOI | MR | Zbl

[25] Y. Sawano, “Theory of Besov Spaces”, Developments in Mathematics, 56, Springer, Singapore, 2018 | DOI | MR | Zbl

[26] M. Sugimoto, “$L^p$-boundedness of pseudodifferential operators satisfying Besov estimates. I”, J. Math. Soc. Japan, 40:1 (1988), 105–122 | DOI | MR | Zbl