Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_1_a5, author = {A. S. Demidov}, title = {On {Numerically} {Implementable} {Explicit} {Formulas} for the {Solutions} to the {2D} and {3D} {Equations} $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with {Cauchy} {Data} on an {Analytic} {Boundary}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {65--72}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/} }
TY - JOUR AU - A. S. Demidov TI - On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 65 EP - 72 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/ LA - ru ID - FAA_2021_55_1_a5 ER -
%0 Journal Article %A A. S. Demidov %T On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 65-72 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/ %G ru %F FAA_2021_55_1_a5
A. S. Demidov. On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/
[1] A. S. Demidov, “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, UMN, 65:1(391) (2010), 3–96 | DOI | MR | Zbl
[2] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, MTsNMO, M., 2002
[3] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, CRR Press, Boca Raton, FL, 2012 | MR
[4] P. G. Grinevich, R. G. Novikov, “Moutard transforms for the conductivity equation”, Lett. Math. Phys., 109:10 (2019), 2209–2222 | DOI | MR | Zbl