On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 65-72
Cet article a éte moissonné depuis la source Math-Net.Ru
A construction of numerically implementable explicit expressions for the solutions of the two- and three-dimensional equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy data on an analytic boundary is presented.
Keywords:
Cauchy problem
Mots-clés : elliptic equation, explicit formula.
Mots-clés : elliptic equation, explicit formula.
@article{FAA_2021_55_1_a5,
author = {A. S. Demidov},
title = {On {Numerically} {Implementable} {Explicit} {Formulas} for the {Solutions} to the {2D} and {3D} {Equations} $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with {Cauchy} {Data} on an {Analytic} {Boundary}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {65--72},
year = {2021},
volume = {55},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/}
}
TY - JOUR
AU - A. S. Demidov
TI - On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2021
SP - 65
EP - 72
VL - 55
IS - 1
UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/
LA - ru
ID - FAA_2021_55_1_a5
ER -
%0 Journal Article
%A A. S. Demidov
%T On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 65-72
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/
%G ru
%F FAA_2021_55_1_a5
A. S. Demidov. On Numerically Implementable Explicit Formulas for the Solutions to the 2D and 3D Equations $\operatorname{div}(\alpha(w)\nabla w)=0$ and $\operatorname{div}(\beta\nabla w)=0$ with Cauchy Data on an Analytic Boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a5/
[1] A. S. Demidov, “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, UMN, 65:1(391) (2010), 3–96 | DOI | MR | Zbl
[2] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, MTsNMO, M., 2002
[3] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, CRR Press, Boca Raton, FL, 2012 | MR
[4] P. G. Grinevich, R. G. Novikov, “Moutard transforms for the conductivity equation”, Lett. Math. Phys., 109:10 (2019), 2209–2222 | DOI | MR | Zbl