Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_1_a4, author = {S. M. Gusein-Zade and A.-M. Ya. Rauch}, title = {On {Simple} ${\mathbb Z}_3${-Invariant} {Function} {Germs}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {56--64}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/} }
S. M. Gusein-Zade; A.-M. Ya. Rauch. On Simple ${\mathbb Z}_3$-Invariant Function Germs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/
[1] V. I. Arnold, “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | DOI | MR
[2] V. I. Arnold, “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5(203) (1978), 91–105 | MR | Zbl
[3] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982
[4] M. Kreuzer, “The mirror map for invertible LG models”, Phys. Lett. B, 328:3–4 (1994), 312–318 | DOI | MR
[5] S. M. Gusein-Zade, A.-M. Ya. Raukh, “O prostykh ${\mathbb Z}_2$-invariantnykh i uglovykh rostkakh funktsii”, Matem. zametki, 107:6 (2020), 855–864 | DOI | MR | Zbl
[6] P. Slodowy, “Einige Bemerkungen zur Entfaltung symmetrischer Funktionen”, Math. Z., 158:2 (1978), 157–170 | DOI | MR | Zbl
[7] J. Steenbrink, “Intersection form for quasi-homogeneous singularities”, Compositio Math., 34:2 (1977), 211–223 | MR | Zbl
[8] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl
[9] G. Wassermann, “Classification of singularities with compact abelian symmetry”, Singularities, Warsaw, 1985, Banach Center Publ., 20, PWN, Warsaw, 1988, 475–498 | DOI | MR