On Simple ${\mathbb Z}_3$-Invariant Function Germs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 56-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

V. I. Arnold classified simple (i.e., having no moduli for classification) singularities (function germs) and also simple boundary singularities, that is, function germs invariant with respect to the action $\sigma(x_1; y_1,\dots, y_n)=(-x_1; y_1,\dots, y_n)$ of the group ${\mathbb Z}_2$. In particular, he showed that a function germ (a germ of a boundary singularity) is simple if and only if the intersection form (respectively, the restriction of the intersection form to the subspace of anti-invariant cycles) of a germ in $3+4s$ variables stably equivalent to the one under consideration is negative definite and if and only if the (equivariant) monodromy group on the corresponding space is finite. In a previous paper the authors obtained analogues of the latter statements for function germs invariant with respect to an arbitrary action of the group ${\mathbb Z}_2$ and also for corner singularities. This paper presents an analogue of the simplicity criterion in terms of the intersection form for functions invariant with respect to a number of actions (representations) of the group ${\mathbb Z}_3$.
Mots-clés : Group action, invariant germ
Keywords: simple singularity.
@article{FAA_2021_55_1_a4,
     author = {S. M. Gusein-Zade and A.-M. Ya. Rauch},
     title = {On {Simple} ${\mathbb Z}_3${-Invariant} {Function} {Germs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--64},
     year = {2021},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - A.-M. Ya. Rauch
TI  - On Simple ${\mathbb Z}_3$-Invariant Function Germs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 56
EP  - 64
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/
LA  - ru
ID  - FAA_2021_55_1_a4
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A A.-M. Ya. Rauch
%T On Simple ${\mathbb Z}_3$-Invariant Function Germs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 56-64
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/
%G ru
%F FAA_2021_55_1_a4
S. M. Gusein-Zade; A.-M. Ya. Rauch. On Simple ${\mathbb Z}_3$-Invariant Function Germs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a4/

[1] V. I. Arnold, “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | DOI | MR

[2] V. I. Arnold, “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5(203) (1978), 91–105 | MR | Zbl

[3] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982

[4] M. Kreuzer, “The mirror map for invertible LG models”, Phys. Lett. B, 328:3–4 (1994), 312–318 | DOI | MR

[5] S. M. Gusein-Zade, A.-M. Ya. Raukh, “O prostykh ${\mathbb Z}_2$-invariantnykh i uglovykh rostkakh funktsii”, Matem. zametki, 107:6 (2020), 855–864 | DOI | MR | Zbl

[6] P. Slodowy, “Einige Bemerkungen zur Entfaltung symmetrischer Funktionen”, Math. Z., 158:2 (1978), 157–170 | DOI | MR | Zbl

[7] J. Steenbrink, “Intersection form for quasi-homogeneous singularities”, Compositio Math., 34:2 (1977), 211–223 | MR | Zbl

[8] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl

[9] G. Wassermann, “Classification of singularities with compact abelian symmetry”, Singularities, Warsaw, 1985, Banach Center Publ., 20, PWN, Warsaw, 1988, 475–498 | DOI | MR