On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 43-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The norms of embedding operators $\mathring{W}^n_2[0,1]\hookrightarrow\mathring{W}^k_\infty[0,1]$ ($0\leqslant k\leqslant n-1$) of Sobolev spaces are considered. The least possible values of $A^2_{n,k}(x)$ in the inequalities $|f^{(k)}(x)|^2\leqslant A^2_{n,k}(x)\|f^{(n)}\|^2_{L_2[0,1]}$ ($f\in \mathring{W}^n_2[0,1]$) are studied. On the basis of relations between the functions $A^2_{n,k}(x)$ and primitives of the Legendre polynomials, properties of the maxima of the functions $A^2_{n,k}(x)$ are determined. It is shown that, for any $k$, the points of global maximum of the function $A^2_{n,k}$ on the interval $[0,1]$ is the point of local maximum nearest to the midpoint of this interval; in particular, for even $k$, such a point is $x=1/2$. For all even $k$, explicit expressions for the norms of embedding operators are found.
Mots-clés : Sobolev spaces, Legendre polynomials
Keywords: embedding constants, estimates for derivatives .
@article{FAA_2021_55_1_a3,
     author = {T. A. Garmanova and I. A. Sheipak},
     title = {On {Sharp} {Estimates} of {Even-Order} {Derivatives} in {Sobolev} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {43--55},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a3/}
}
TY  - JOUR
AU  - T. A. Garmanova
AU  - I. A. Sheipak
TI  - On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 43
EP  - 55
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a3/
LA  - ru
ID  - FAA_2021_55_1_a3
ER  - 
%0 Journal Article
%A T. A. Garmanova
%A I. A. Sheipak
%T On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 43-55
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a3/
%G ru
%F FAA_2021_55_1_a3
T. A. Garmanova; I. A. Sheipak. On Sharp Estimates of Even-Order Derivatives in Sobolev Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a3/

[1] G. A. Kalyabin, “Tochnye otsenki dlya proizvodnykh funktsii iz klassov Soboleva $\mathring{W}^{r}_2(-1;1)$”, Trudy MIAN, 269 (2010), 143–149 | Zbl

[2] A. I. Nazarov, A. N. Petrova, “O tochnykh konstantakh v nekotorykh teoremakh vlozheniya vysokogo poryadka”, Vestnik SPbGU. Ser. 1, 2008, no. 4, 16–20 | Zbl

[3] Yu. P. Petrova, “Spektralnye asimptotiki dlya zadach s integralnymi ogranicheniyami”, Matem. zametki, 102:3 (2017), 405–414 | DOI | MR | Zbl

[4] H. Yamagishi, “The best constant of Sobolev inequality corresponding to Dirichlet–Neumann boundary value problem for $(-1)^M(d/dx)^{2M}$”, Hiroshima Math. J., 39:3 (2009), 421–442 | DOI | MR | Zbl

[5] H. Yamagishi, Y. Kametaka, A. Nagai, K. Watanabe, K. Takemura, “Riemann zeta function and the best constants of five series of Sobolev inequalities”, RIMS Kôkyûroku Bessatsu, B13 (2009), 125–139 | MR | Zbl

[6] E. V. Mukoseeva, A. I. Nazarov, “O simmetrii ektremali v nekotorykh teoremakh vlozheniya”, Zap. nauchn. sem. POMI, 425, 2014, 35–45

[7] E. V. Mukoseeva, A. I. Nazarov, “Corrigendum”, Zap. nauchn. sem. POMI, 489, 2020, 225 | MR

[8] I. A. Sheipak, T. A. Garmanova, “Yavnyi vid ekstremalei v zadache o konstantakh vlozheniya v prostranstvakh Soboleva”, Trudy MMO, 80:2 (2019), 221–246 | MR | Zbl

[9] K. V. Kholshevnikov, V. Sh. Shaidulin, “O svoistvakh integralov ot mnogochlena Lezhandra”, Vestnik SPbGU, Ser. 1, 1(59):1 (2014), 55–67

[10] F. Trikomi, Differentsialnye uravneniya, IL, M., 1962

[11] L. Ya. Adrianova, Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Peterb. un-ta, S.-Peterburg, 1992