Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_1_a2, author = {A. M. Vershik and N. V. Tsilevich}, title = {Ergodicity and {Totality} of {Partitions} {Associated} with the {RSK} {Correspondence}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {33--42}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/} }
TY - JOUR AU - A. M. Vershik AU - N. V. Tsilevich TI - Ergodicity and Totality of Partitions Associated with the RSK Correspondence JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 33 EP - 42 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/ LA - ru ID - FAA_2021_55_1_a2 ER -
A. M. Vershik; N. V. Tsilevich. Ergodicity and Totality of Partitions Associated with the RSK Correspondence. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 33-42. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/
[1] A. M. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl
[2] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl
[3] A. M. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Tr. MIAN, 305 (2019), 71–85 | DOI | Zbl
[4] A. M. Vershik, “K obosnovaniyu ergodicheskogo metoda opisaniya invariantnykh mer”, Dokl. RAN (to appear)
[5] A. M. Vershik, N. V. Tsilevich, “Markovskie mery na tablitsakh Yunga i indutsirovannye predstavleniya beskonechnoi simmetricheskoi gruppy”, Teoriya veroyatn. i ee primen., 51:1 (2006), 47–63 | DOI | MR
[6] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006
[7] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[8] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[9] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[10] P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl
[11] F. Spitzer, Principles of Random Walk, Springer-Verlag, New York–Heidelberg, 1976 | MR | Zbl