Ergodicity and Totality of Partitions Associated with the RSK Correspondence
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic properties of sequences of partitions ($\sigma$‑algebras) associated with the Robinson–Schensted–Knuth correspondence in spaces with Bernoulli measures are studied.
Keywords: RSK correspondence, youngization, ergodicity of a sequence of partitions, totality of a sequence of partitions.
@article{FAA_2021_55_1_a2,
     author = {A. M. Vershik and N. V. Tsilevich},
     title = {Ergodicity and {Totality} of {Partitions} {Associated} with the {RSK} {Correspondence}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - N. V. Tsilevich
TI  - Ergodicity and Totality of Partitions Associated with the RSK Correspondence
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 33
EP  - 42
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/
LA  - ru
ID  - FAA_2021_55_1_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A N. V. Tsilevich
%T Ergodicity and Totality of Partitions Associated with the RSK Correspondence
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 33-42
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/
%G ru
%F FAA_2021_55_1_a2
A. M. Vershik; N. V. Tsilevich. Ergodicity and Totality of Partitions Associated with the RSK Correspondence. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 33-42. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a2/

[1] A. M. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. AN SSSR, 218:4 (1974), 749–752 | Zbl

[2] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl

[3] A. M. Vershik, “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Tr. MIAN, 305 (2019), 71–85 | DOI | Zbl

[4] A. M. Vershik, “K obosnovaniyu ergodicheskogo metoda opisaniya invariantnykh mer”, Dokl. RAN (to appear)

[5] A. M. Vershik, N. V. Tsilevich, “Markovskie mery na tablitsakh Yunga i indutsirovannye predstavleniya beskonechnoi simmetricheskoi gruppy”, Teoriya veroyatn. i ee primen., 51:1 (2006), 47–63 | DOI | MR

[6] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006

[7] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[8] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[9] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl

[10] P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl

[11] F. Spitzer, Principles of Random Walk, Springer-Verlag, New York–Heidelberg, 1976 | MR | Zbl