Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_1_a0, author = {Y. Abouelhanoune and M. El Jarroudi}, title = {Interfacial {Contact} {Model} in a {Dense} {Network} of {Elastic} {Materials}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--19}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a0/} }
TY - JOUR AU - Y. Abouelhanoune AU - M. El Jarroudi TI - Interfacial Contact Model in a Dense Network of Elastic Materials JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 3 EP - 19 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a0/ LA - ru ID - FAA_2021_55_1_a0 ER -
Y. Abouelhanoune; M. El Jarroudi. Interfacial Contact Model in a Dense Network of Elastic Materials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a0/
[1] S. V. Anishchik, N. N. Medvedev, “Three-dimensional Apollonian packing as a model for dense granular systems”, Phys. Rev. Lett., 75 (1995), 4314–4317 | DOI
[2] H. Attouch, Variational convergence for functions and operators, Appl. Math. Series, Pitman, Boston–London–Melbourn, 1984 | MR | Zbl
[3] Y. Ben-Zion, C. G. Sammis, “Characterization of fault zones”, Pure and Applied Geophysics, 160 (2003), 677–715 | DOI
[4] D. W. Boyd, “The residual set dimension of Apollonian packing”, Mathematika, 20 (1973), 170–174 | DOI | MR | Zbl
[5] R. Capitanelli, M. R. Lancia, M. A. Vivaldi, “Insulating layers of fractal type”, Differential Integral Equations, 26:9/10 (2013), 1055–1076 | MR | Zbl
[6] G. Dal Maso, An Introduction to $\Gamma$-Convergence, Progress in Nonlinear Differential Equations and Applications, 8, Birkhäuser, Basel, 1993 | MR | Zbl
[7] M. El Jarroudi, “Asymptotic analysis of contact problems between an elastic material and thin-rigid plates”, Appl. Anal., 89:5 (2010), 693–715 | DOI | MR | Zbl
[8] M. El Jarroudi, M. Er-Riani, “Homogenization of elastic materials containing self-similar microcracks”, Quart. J. Mech. Appl. Math, 72:2 (2019), 131–155 | DOI | MR | Zbl
[9] M. El Jarroudi, A. Brillard, “Asymptotic behaviour of contact problems between two elastic materials through a fractal interface”, J. Math. Pures Appl., 89:5 (2008), 505–521 | DOI | MR | Zbl
[10] K. Falconer, Techniques in Fractal Geometry, J. Wiley Sons and sons, Chichester, 1997 | MR | Zbl
[11] H. J. Herrmann, G. Mantica, D. Bessis, “Space-filling bearings”, Phys. Rev. Lett, 65:26 (1990), 3223–3226 | DOI | MR | Zbl
[12] H. Hertz, “Über die berührung fester elastischer körper”, J. Rein. Angew. Math., 92 (1882), 156–171 | DOI | MR
[13] P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math., 147:1–2 (1981), 71–88 | DOI | MR | Zbl
[14] A. Jonsson, H. Wallin, “Boundary value problems and Brownian motion on fractals”, Chaos Solitons Fractals, 8:2 (1997), 191–205 | DOI | MR | Zbl
[15] J. C. Kim, K. H. Auh, D. M. Martin, “Multi-level particle packing model of ceramic agglomerates”, Model. Simul. Mater. Sci. Eng., 8 (2000), 159–168 | DOI
[16] M. R. Lancia, “A transmission problem with a fractal interface”, Z. Anal. Anwend., 21:1 (2002), 113–133 | DOI | MR | Zbl
[17] C. Marone, C. B. Raleigh, C. H. Scholz, “Frictional behavior and constitutive modeling of simulated fault gouge”, J. Geoph. Res., 95:B5 (1990), 7007–7025 | DOI
[18] R. D. Mauldin, M. Urbanski, “Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing”, Adv. Maths, 136:1 (1998), 26–38 | DOI | MR | Zbl
[19] U. Mosco, M. A. Vivaldi, “Fractal reinforcement of elastic membranes”, Arch. Ration. Mech. Anal., 194 (2009), 49–74 | DOI | MR | Zbl
[20] U. Mosco, M. A. Vivaldi, “Thin fractal fibers”, Math. Meth. Appl. Sci., 36:15 (2013), 2048–2068 | MR | Zbl
[21] N. I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR
[22] S. Roux, A. Hansen, H. J. Herrmann, “A model for gouge deformation: implication for remanent magnetization”, Geoph. Res. Lett., 20:14 (1993), 1499–1502 | DOI
[23] V. S. Rychkov, “Linear extension operators for restrictions of function spaces to irregular open sets”, Studia Math., 140:2 (2000), 141–162 | DOI | MR | Zbl
[24] C. G. Sammis, R. L. Biegel, “Fractals, fault-gouge, and friction”, Pure and Applied Geophysics, 131:1/2 (1989) | DOI
[25] C. H. Scholz, The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, 2002
[26] S. J. Steacy, C. G. Sammis, “An automaton for fractal patterns of fragmentation”, Nature, 353 (1991), 250–252 | DOI
[27] D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinan groups”, Acta. Math., 153:3–4 (1984), 259–277 | DOI | MR | Zbl
[28] D. M. Walker, A. Tordesillas, Topological evolution in dense granular materials: A complex networks perspective, 47 (2010), 624–639 | Zbl