Fourier Transform on the Lobachevsky Plane and Operational Calculus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 64-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Fourier transform on the line sends the operator of multiplication by $x$ to $i\frac{d}{d\xi}$ and the operator $\frac{d}{d x}$ of differentiation to multiplication by $-i\xi$. For the Fourier transform on the Lobachevsky plane, we establish a similar correspondence for a certain family of differential operators. It appears that differential operators on the Lobachevsky plane correspond to differential-difference operators in the Fourier image, where shift operators act in the imaginary direction, i.e., a direction transversal to the integration contour in the Plancherel formula.
Keywords: group $\operatorname{SL}(2,\mathbb{R})$, representations of the principal series, differential-difference operators.
Mots-clés : Plancherel decomposition
@article{FAA_2020_54_4_a4,
     author = {Yu. A. Neretin},
     title = {Fourier {Transform} on the {Lobachevsky} {Plane} and {Operational} {Calculus}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--73},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Fourier Transform on the Lobachevsky Plane and Operational Calculus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 64
EP  - 73
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/
LA  - ru
ID  - FAA_2020_54_4_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Fourier Transform on the Lobachevsky Plane and Operational Calculus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 64-73
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/
%G ru
%F FAA_2020_54_4_a4
Yu. A. Neretin. Fourier Transform on the Lobachevsky Plane and Operational Calculus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 64-73. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/

[1] I. Cherednik, “Inverse Harish-Chandra transform and difference operators”, Internat. Math. Res. Notices, 15 (1997), 733–750 | DOI | MR | Zbl

[2] J. F. van Diejen, E. Emsiz, “Difference equation for the Heckman–Opdam hypergeometric function and its confluent Whittaker limit”, Adv. Math., 285 (2015), 1225–1240 | DOI | MR | Zbl

[3] V. A. Fok, “O razlozhenii proizvolnoi funktsii v integral po funktsiyam Lezhandra s kompleksnym znachkom”, Dokl. AN SSSR, 39:7 (1943), 279–283

[4] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, no. 5, M., Gos. izd-vo fiz.-mat. lit., 1962 | MR

[5] W. Groenevelt, “The Wilson function transform”, Internat. Math. Res. Notices, 52 (2003), 2779–2817 | DOI | MR | Zbl

[6] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[7] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, Reidel, Dodrecht–Boston, 1984, 1–85 | MR | Zbl

[8] F. G. Mehler, “Ueber eine mit den Kugel- und Cylindrfunctionen verwandte Function und ihre Anwedung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR

[9] V. F. Molchanov, “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. analiz i ego pril., 39:4 (2005), 48–61 | DOI | MR | Zbl

[10] V. F. Molchanov, “Canonical representations on Lobachevsky spaces: an interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337 | DOI | MR | Zbl

[11] V. F. Molchanov, “Preobrazovaniya Puassona i Fure dlya tenzornykh proizvedenii”, Funkts. analiz i ego pril., 49:4 (2015), 50–60 | DOI | Zbl

[12] V. F. Molchanov, Yu. A. Neretin, “A pair of commuting hypergeometric operators on the complex plane and bispectrality”, J. Spectr. Theory (to appear) | MR

[13] Yu. A. Neretin, “Deistvie nadalgebry v plansherelevskom razlozhenii i operatory sdviga v mnimom napravlenii”, Izv. RAN. Ser. matem., 66:5 (2002), 171–182 | DOI | MR | Zbl

[14] Yu. A. Neretin, “Difference Sturm–Liouville problems in the imaginary direction”, J. Spectr. Theory, 3:3 (2013), 237–269 | DOI | MR | Zbl

[15] Yu. A. Neretin, “Restriction of representations of $\operatorname{GL}(n+1,\mathbb{C})$ to $\operatorname{GL}(n,\mathbb{C})$ and action of the Lie overalgebra”, Algebras Represent. Theory, 21:5 (2018), 1087–1117 | DOI | MR | Zbl

[16] Yu. A. Neretin, “Operatsionnoe ischislenie dlya preobrazovaniya Fure na gruppe $\operatorname{GL}(2,\mathbb{R})$ i zadacha o deistvii nadalgebry v plansherelevskom razlozhenii”, Funkts. analiz i ego pril., 52:3 (2018), 42–52 | DOI | MR | Zbl

[17] Yu. A. Neretin, “The Fourier transform on the group $\operatorname{GL}_2(\mathbb{R})$ and the action of the overalgebra $\mathfrak{gl}_4$”, J. Fourier Anal. Appl., 25:2 (2019), 488–505 | DOI | MR | Zbl

[18] Yu. Neretin, “After Plancherel formula”, Geometric Methods in Physics XXXVI, Workshop and Summer School (Białowie.{z}a, Poland, July 2-8, 2017), Trends Math., Birkhäuser, Cham, 2019, 389–401 | DOI | MR | Zbl

[19] M. N. Olevskii, “O predstavlenii proizvolnoi funktsii v vide integrala s yadrom, yavlyayuschimsya gipergeometricheskoi funktsiei”, Dokl. AN SSSR, 69:1 (1949), 11–14 | Zbl

[20] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, v. I, Springer-Verlag, New York, 1985 | MR | Zbl

[21] H. Weyl, “Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen (2. Note)”, Göttinger Nachrichten, 1910, 442–467 ; H. Weyl, Gesammelte Abhandlungen, v. I, Springer-Verlag, Berlin, 1968, 222–247 | Zbl | MR