Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_4_a4, author = {Yu. A. Neretin}, title = {Fourier {Transform} on the {Lobachevsky} {Plane} and {Operational} {Calculus}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {64--73}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/} }
Yu. A. Neretin. Fourier Transform on the Lobachevsky Plane and Operational Calculus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 64-73. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a4/
[1] I. Cherednik, “Inverse Harish-Chandra transform and difference operators”, Internat. Math. Res. Notices, 15 (1997), 733–750 | DOI | MR | Zbl
[2] J. F. van Diejen, E. Emsiz, “Difference equation for the Heckman–Opdam hypergeometric function and its confluent Whittaker limit”, Adv. Math., 285 (2015), 1225–1240 | DOI | MR | Zbl
[3] V. A. Fok, “O razlozhenii proizvolnoi funktsii v integral po funktsiyam Lezhandra s kompleksnym znachkom”, Dokl. AN SSSR, 39:7 (1943), 279–283
[4] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, no. 5, M., Gos. izd-vo fiz.-mat. lit., 1962 | MR
[5] W. Groenevelt, “The Wilson function transform”, Internat. Math. Res. Notices, 52 (2003), 2779–2817 | DOI | MR | Zbl
[6] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR
[7] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, Reidel, Dodrecht–Boston, 1984, 1–85 | MR | Zbl
[8] F. G. Mehler, “Ueber eine mit den Kugel- und Cylindrfunctionen verwandte Function und ihre Anwedung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR
[9] V. F. Molchanov, “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. analiz i ego pril., 39:4 (2005), 48–61 | DOI | MR | Zbl
[10] V. F. Molchanov, “Canonical representations on Lobachevsky spaces: an interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337 | DOI | MR | Zbl
[11] V. F. Molchanov, “Preobrazovaniya Puassona i Fure dlya tenzornykh proizvedenii”, Funkts. analiz i ego pril., 49:4 (2015), 50–60 | DOI | Zbl
[12] V. F. Molchanov, Yu. A. Neretin, “A pair of commuting hypergeometric operators on the complex plane and bispectrality”, J. Spectr. Theory (to appear) | MR
[13] Yu. A. Neretin, “Deistvie nadalgebry v plansherelevskom razlozhenii i operatory sdviga v mnimom napravlenii”, Izv. RAN. Ser. matem., 66:5 (2002), 171–182 | DOI | MR | Zbl
[14] Yu. A. Neretin, “Difference Sturm–Liouville problems in the imaginary direction”, J. Spectr. Theory, 3:3 (2013), 237–269 | DOI | MR | Zbl
[15] Yu. A. Neretin, “Restriction of representations of $\operatorname{GL}(n+1,\mathbb{C})$ to $\operatorname{GL}(n,\mathbb{C})$ and action of the Lie overalgebra”, Algebras Represent. Theory, 21:5 (2018), 1087–1117 | DOI | MR | Zbl
[16] Yu. A. Neretin, “Operatsionnoe ischislenie dlya preobrazovaniya Fure na gruppe $\operatorname{GL}(2,\mathbb{R})$ i zadacha o deistvii nadalgebry v plansherelevskom razlozhenii”, Funkts. analiz i ego pril., 52:3 (2018), 42–52 | DOI | MR | Zbl
[17] Yu. A. Neretin, “The Fourier transform on the group $\operatorname{GL}_2(\mathbb{R})$ and the action of the overalgebra $\mathfrak{gl}_4$”, J. Fourier Anal. Appl., 25:2 (2019), 488–505 | DOI | MR | Zbl
[18] Yu. Neretin, “After Plancherel formula”, Geometric Methods in Physics XXXVI, Workshop and Summer School (Białowie.{z}a, Poland, July 2-8, 2017), Trends Math., Birkhäuser, Cham, 2019, 389–401 | DOI | MR | Zbl
[19] M. N. Olevskii, “O predstavlenii proizvolnoi funktsii v vide integrala s yadrom, yavlyayuschimsya gipergeometricheskoi funktsiei”, Dokl. AN SSSR, 69:1 (1949), 11–14 | Zbl
[20] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, v. I, Springer-Verlag, New York, 1985 | MR | Zbl
[21] H. Weyl, “Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen (2. Note)”, Göttinger Nachrichten, 1910, 442–467 ; H. Weyl, Gesammelte Abhandlungen, v. I, Springer-Verlag, Berlin, 1968, 222–247 | Zbl | MR