Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_4_a2, author = {N. Demni and T. Hamdi and A. Souaissi}, title = {The {Hermitian} {Jacobi} {Process:} {A} {Simplified} {Formula} for the {Moments} and {Application} to {Optical} {Fiber} {MIMO} {Channels}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--55}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/} }
TY - JOUR AU - N. Demni AU - T. Hamdi AU - A. Souaissi TI - The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 37 EP - 55 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/ LA - ru ID - FAA_2020_54_4_a2 ER -
%0 Journal Article %A N. Demni %A T. Hamdi %A A. Souaissi %T The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels %J Funkcionalʹnyj analiz i ego priloženiâ %D 2020 %P 37-55 %V 54 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/ %G ru %F FAA_2020_54_4_a2
N. Demni; T. Hamdi; A. Souaissi. The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 37-55. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/
[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] C. Balderrama, P. Graczyk, W. O. Urbina, “A formula for polynomials with Hermitian matrix argument”, Bull. Sci. Math., 129:6 (2005), 486–500 | DOI | MR | Zbl
[3] C. Carré, M. Deneufchatel, J.-G. Luque, P. Vivo, “Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula”, J. Math. Phys., 51:12 (2010), 123516 | DOI | MR | Zbl
[4] B. Collins, “Product of random projections, Jacobi ensembles and universality problems arising from free probability”, Probab. Theory Related Fields, 133:3 (2005), 315–344 | DOI | MR | Zbl
[5] B. Collins, A. Dahlqvist, T. Kemp, “The spectral edge of unitary Brownian motion”, Probab. Theory Related Fields, 170:1–2 (2018), 49–93 | DOI | MR | Zbl
[6] R. Dar, M. Feder, M. Shtaif, “The Jacobi MIMO channel”, Information Theory, IEEE Transaction, 59:4 (2013), 2426–2441 | DOI | MR | Zbl
[7] P. Deift, D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York, NY; Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[8] L. Deleaval, N. Demni, “Moments of the Hermitian matrix Jacobi process”, J. Theoret. Probab., 31:3 (2018), 1759–1778 | DOI | MR | Zbl
[9] N. Demni, “$\beta$-Jacobi processes”, Adv. Pure Appl. Math, 1:3 (2010), 325–344 | DOI | MR | Zbl
[10] N. Demni, T. Hamdi, “Inverse of the flow and moments of the free Jacobi process associated with one projection”, Random Matrices: Theory Appl., 7:2 (2018) | DOI | MR | Zbl
[11] Y. Doumerc, Matrices aléatoires, processus stochastiques et groupes de réflexions, Ph. D. Thesis, Paul Sabatier Univ, 2005; https://perso.math.univ-toulouse.fr/ledoux/files/2013/11/PhD-thesis.pdf | Zbl
[12] J. Koekoek, R. Koekoek, “The Jacobi inversion formula”, Complex Variables Theory Appl., 39:1 (1999), 1–18 | DOI | MR | Zbl
[13] C. Krattenthaler, “Advanced determinant calculus. The Andrews Festschrift (Maratea, 1998)”, Sém. Lothar. Combin, 42 (1999), Art. B42q | MR
[14] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris, 312, Série I (1991), 425–428 | MR | Zbl
[15] M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991 | MR | Zbl
[16] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Math. Monographs, Oxford, 1995 | MR | Zbl
[17] A. Nafkha, N. Demni, Closed-form expressions of ergodic capacity and MMSE achievable sum rate for MIMO Jacobi and Rayleigh fading channels, arXiv: 1511.06074
[18] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Internat. Math. Res. Notices, 16 (2012), 3615–3679 | DOI | MR | Zbl
[19] G. I. Olshanskii, A. A. Osinenko, “Mnogomernye mnogochleny Yakobi i integral Selberga”, Funkts. analiz i ego pril., 46:4 (2012), 31–50 | DOI | MR | Zbl
[20] I. E. Telatar, “Capacity of multi-antenna gaussian channels”, European Transactions on Telecommunications, 10 (1999), 585–595 | DOI | MR