The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 37-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a change of basis in the algebra of symmetric functions, we compute the moments of the Hermitian Jacobi process. After a careful arrangement of terms and the evaluation of the determinant of an “almost upper-triangular” matrix, we end up with a moment formula which is considerably simpler than the one derived in [L. Deleaval, N. Demni, J. Theoret. Probab., 31:3 (2018), 1759–1778]. As an application, we propose the Hermitian Jacobi process as a dynamical model for an optical fiber MIMO channel and compute its Shannon capacity in the case of a low-power transmitter. Moreover, when the size of the Hermitian Jacobi process is larger than the moment order, our moment formula can be written as a linear combination of balanced terminating ${}_4F_3$-series evaluated at unit argument.
Keywords: unitary Brownian motion, Jacobi unitary ensemble, Schur polynomials, symmetric Jacobi polynomials, MIMO channels, Shannon capacity.
Mots-clés : orthogonal projection
@article{FAA_2020_54_4_a2,
     author = {N. Demni and T. Hamdi and A. Souaissi},
     title = {The {Hermitian} {Jacobi} {Process:} {A} {Simplified} {Formula} for the {Moments} and {Application} to {Optical} {Fiber} {MIMO} {Channels}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--55},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/}
}
TY  - JOUR
AU  - N. Demni
AU  - T. Hamdi
AU  - A. Souaissi
TI  - The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 37
EP  - 55
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/
LA  - ru
ID  - FAA_2020_54_4_a2
ER  - 
%0 Journal Article
%A N. Demni
%A T. Hamdi
%A A. Souaissi
%T The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 37-55
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/
%G ru
%F FAA_2020_54_4_a2
N. Demni; T. Hamdi; A. Souaissi. The Hermitian Jacobi Process: A Simplified Formula for the Moments and Application to Optical Fiber MIMO Channels. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 37-55. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a2/

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] C. Balderrama, P. Graczyk, W. O. Urbina, “A formula for polynomials with Hermitian matrix argument”, Bull. Sci. Math., 129:6 (2005), 486–500 | DOI | MR | Zbl

[3] C. Carré, M. Deneufchatel, J.-G. Luque, P. Vivo, “Asymptotics of Selberg-like integrals: The unitary case and Newton's interpolation formula”, J. Math. Phys., 51:12 (2010), 123516 | DOI | MR | Zbl

[4] B. Collins, “Product of random projections, Jacobi ensembles and universality problems arising from free probability”, Probab. Theory Related Fields, 133:3 (2005), 315–344 | DOI | MR | Zbl

[5] B. Collins, A. Dahlqvist, T. Kemp, “The spectral edge of unitary Brownian motion”, Probab. Theory Related Fields, 170:1–2 (2018), 49–93 | DOI | MR | Zbl

[6] R. Dar, M. Feder, M. Shtaif, “The Jacobi MIMO channel”, Information Theory, IEEE Transaction, 59:4 (2013), 2426–2441 | DOI | MR | Zbl

[7] P. Deift, D. Gioev, Random Matrix Theory: Invariant Ensembles and Universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York, NY; Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[8] L. Deleaval, N. Demni, “Moments of the Hermitian matrix Jacobi process”, J. Theoret. Probab., 31:3 (2018), 1759–1778 | DOI | MR | Zbl

[9] N. Demni, “$\beta$-Jacobi processes”, Adv. Pure Appl. Math, 1:3 (2010), 325–344 | DOI | MR | Zbl

[10] N. Demni, T. Hamdi, “Inverse of the flow and moments of the free Jacobi process associated with one projection”, Random Matrices: Theory Appl., 7:2 (2018) | DOI | MR | Zbl

[11] Y. Doumerc, Matrices aléatoires, processus stochastiques et groupes de réflexions, Ph. D. Thesis, Paul Sabatier Univ, 2005; https://perso.math.univ-toulouse.fr/ledoux/files/2013/11/PhD-thesis.pdf | Zbl

[12] J. Koekoek, R. Koekoek, “The Jacobi inversion formula”, Complex Variables Theory Appl., 39:1 (1999), 1–18 | DOI | MR | Zbl

[13] C. Krattenthaler, “Advanced determinant calculus. The Andrews Festschrift (Maratea, 1998)”, Sém. Lothar. Combin, 42 (1999), Art. B42q | MR

[14] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris, 312, Série I (1991), 425–428 | MR | Zbl

[15] M. L. Mehta, Random Matrices, Academic Press, Boston, MA, 1991 | MR | Zbl

[16] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Math. Monographs, Oxford, 1995 | MR | Zbl

[17] A. Nafkha, N. Demni, Closed-form expressions of ergodic capacity and MMSE achievable sum rate for MIMO Jacobi and Rayleigh fading channels, arXiv: 1511.06074

[18] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Internat. Math. Res. Notices, 16 (2012), 3615–3679 | DOI | MR | Zbl

[19] G. I. Olshanskii, A. A. Osinenko, “Mnogomernye mnogochleny Yakobi i integral Selberga”, Funkts. analiz i ego pril., 46:4 (2012), 31–50 | DOI | MR | Zbl

[20] I. E. Telatar, “Capacity of multi-antenna gaussian channels”, European Transactions on Telecommunications, 10 (1999), 585–595 | DOI | MR