Expansive Endomorphisms on the Infinite-Dimensional Torus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 17-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural class of expansive endomorphisms $G\in C^1$ of the infinite-dimensional torus $\mathbb{T}^{\infty}$ (the Cartesian product of countably many circles with the product topology) is considered. The endomorphisms in this class can be represented in the form of the sum of a linear expansion and a periodic addition. The following standard facts of hyperbolic theory are proved: the topological conjugacy of any expansive endomorphism $G$ from the class under consideration to a linear endomorphism of the torus, the structural stability of $G$, and the topological mixing property of $G$ on $\mathbb{T}^{\infty}$.
Mots-clés : endomorphism, torus
Keywords: hyperbolicity, topological conjugacy, structural stability, mixing.
@article{FAA_2020_54_4_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Expansive {Endomorphisms} on the {Infinite-Dimensional} {Torus}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--36},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Expansive Endomorphisms on the Infinite-Dimensional Torus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 17
EP  - 36
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/
LA  - ru
ID  - FAA_2020_54_4_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Expansive Endomorphisms on the Infinite-Dimensional Torus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 17-36
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/
%G ru
%F FAA_2020_54_4_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Expansive Endomorphisms on the Infinite-Dimensional Torus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 17-36. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/

[1] Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, no. 66, VINITI, M., 1991

[2] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[3] A. B. Katok, B. Khasselblat, Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005

[4] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl

[5] S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178 | DOI

[6] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl