Expansive Endomorphisms on the Infinite-Dimensional Torus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 17-36
Cet article a éte moissonné depuis la source Math-Net.Ru
A natural class of expansive endomorphisms $G\in C^1$ of the infinite-dimensional torus $\mathbb{T}^{\infty}$ (the Cartesian product of countably many circles with the product topology) is considered. The endomorphisms in this class can be represented in the form of the sum of a linear expansion and a periodic addition. The following standard facts of hyperbolic theory are proved: the topological conjugacy of any expansive endomorphism $G$ from the class under consideration to a linear endomorphism of the torus, the structural stability of $G$, and the topological mixing property of $G$ on $\mathbb{T}^{\infty}$.
Mots-clés :
endomorphism, torus
Keywords: hyperbolicity, topological conjugacy, structural stability, mixing.
Keywords: hyperbolicity, topological conjugacy, structural stability, mixing.
@article{FAA_2020_54_4_a1,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Expansive {Endomorphisms} on the {Infinite-Dimensional} {Torus}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {17--36},
year = {2020},
volume = {54},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Expansive Endomorphisms on the Infinite-Dimensional Torus JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 17 EP - 36 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/ LA - ru ID - FAA_2020_54_4_a1 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Expansive Endomorphisms on the Infinite-Dimensional Torus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 17-36. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a1/
[1] Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, no. 66, VINITI, M., 1991
[2] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[3] A. B. Katok, B. Khasselblat, Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005
[4] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl
[5] S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178 | DOI
[6] R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl