Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_4_a0, author = {V. M. Buchstaber and E. Yu. Bunkova}, title = {Sigma {Functions} and {Lie} {Algebras} of {Schr\"odinger} {Operators}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--16}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a0/} }
TY - JOUR AU - V. M. Buchstaber AU - E. Yu. Bunkova TI - Sigma Functions and Lie Algebras of Schr\"odinger Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 3 EP - 16 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a0/ LA - ru ID - FAA_2020_54_4_a0 ER -
V. M. Buchstaber; E. Yu. Bunkova. Sigma Functions and Lie Algebras of Schr\"odinger Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a0/
[1] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl
[2] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR
[3] T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 | DOI | MR | Zbl
[4] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry, and Topology: On the Crossroad, Adv. Math. Sci., Amer. Math. Soc. Transl., Ser. 2, 179, Providence, RI, 1997, 1–34 | MR
[5] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, v. 294, Tr. MIAN, MAIK, M., 2016, 191–215 | DOI
[6] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-dimensional sigma-functions, arXiv: 1208.0990
[7] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “$\sigma$-functions: Old and new results”, Integrable Systems and Algebraic Geometry, v. 2, LMS Lecture Note Series, 459, Cambridge Univ. Press, Cambridge, 2019, 175–214 ; arXiv: 1810.11079 | MR
[8] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl
[9] V. I. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, 62, Kluwer Academic Publisher Group, Dordrecht, 1990 | DOI | MR | Zbl
[10] J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395
[11] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl
[12] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | MR | Zbl
[13] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Reprint of 4th (1927) ed., v. 2, Transcendental functions, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[14] E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112 ; arXiv: 1703.03947 | DOI | MR | Zbl
[15] V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4(376) (2007), 153–154 | DOI | MR | Zbl
[16] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl
[17] V. M. Bukhshtaber, E. Yu. Bunkova, “Algebry Li operatorov teploprovodnosti v negolonomnom repere”, Matem. zametki, 108:1 (2020), 17–32 | DOI | MR | Zbl
[18] F. G. Frobenius, L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337 | MR