Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 94-99
Voir la notice de l'article provenant de la source Math-Net.Ru
An elliptic fourth-order differential operator $A_\varepsilon$ on $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is studied. Here $\varepsilon >0$ is
a small parameter. It is assumed that the operator is given in the factorized form $A_\varepsilon = b(\mathbf{D})^* g(\mathbf{x}/\varepsilon) b(\mathbf{D})$, where $g(\mathbf{x})$ is a Hermitian matrix-valued function periodic with respect to some lattice and $b(\mathbf{D})$ is a matrix second-order differential operator. We make assumptions ensuring that the operator $A_\varepsilon$ is
strongly elliptic. The following approximation for the resolvent $(A_\varepsilon + I)^{-1}$ in the operator norm of $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is obtained:
$$
(A_{\varepsilon}+I)^{-1}=(A^{0}+I)^{-1}+\varepsilon K_{1}+\varepsilon^{2}K_{2}(\varepsilon)+O(\varepsilon^{3}).
$$
Here $A^0$ is the effective operator with constant coefficients and $K_{1}$ and $K_{2}(\varepsilon)$ are certain correctors.
Keywords:
periodic differential operators, homogenization, operator error estimates, effective operator, corrector.
@article{FAA_2020_54_3_a7,
author = {V. A. Sloushch and T. A. Suslina},
title = {Homogenization of the {Fourth-Order} {Elliptic} {Operator} with {Periodic} {Coefficients} with {Correctors} {Taken} into {Account}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {94--99},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/}
}
TY - JOUR AU - V. A. Sloushch AU - T. A. Suslina TI - Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 94 EP - 99 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/ LA - ru ID - FAA_2020_54_3_a7 ER -
%0 Journal Article %A V. A. Sloushch %A T. A. Suslina %T Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account %J Funkcionalʹnyj analiz i ego priloženiâ %D 2020 %P 94-99 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/ %G ru %F FAA_2020_54_3_a7
V. A. Sloushch; T. A. Suslina. Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 94-99. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/