Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 94-99

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic fourth-order differential operator $A_\varepsilon$ on $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is studied. Here $\varepsilon >0$ is a small parameter. It is assumed that the operator is given in the factorized form $A_\varepsilon = b(\mathbf{D})^* g(\mathbf{x}/\varepsilon) b(\mathbf{D})$, where $g(\mathbf{x})$ is a Hermitian matrix-valued function periodic with respect to some lattice and $b(\mathbf{D})$ is a matrix second-order differential operator. We make assumptions ensuring that the operator $A_\varepsilon$ is strongly elliptic. The following approximation for the resolvent $(A_\varepsilon + I)^{-1}$ in the operator norm of $L_2(\mathbb{R}^d;\mathbb{C}^n)$ is obtained: $$ (A_{\varepsilon}+I)^{-1}=(A^{0}+I)^{-1}+\varepsilon K_{1}+\varepsilon^{2}K_{2}(\varepsilon)+O(\varepsilon^{3}). $$ Here $A^0$ is the effective operator with constant coefficients and $K_{1}$ and $K_{2}(\varepsilon)$ are certain correctors.
Keywords: periodic differential operators, homogenization, operator error estimates, effective operator, corrector.
@article{FAA_2020_54_3_a7,
     author = {V. A. Sloushch and T. A. Suslina},
     title = {Homogenization of the {Fourth-Order} {Elliptic} {Operator} with {Periodic} {Coefficients} with {Correctors} {Taken} into {Account}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {94--99},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/}
}
TY  - JOUR
AU  - V. A. Sloushch
AU  - T. A. Suslina
TI  - Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 94
EP  - 99
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/
LA  - ru
ID  - FAA_2020_54_3_a7
ER  - 
%0 Journal Article
%A V. A. Sloushch
%A T. A. Suslina
%T Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 94-99
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/
%G ru
%F FAA_2020_54_3_a7
V. A. Sloushch; T. A. Suslina. Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 94-99. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a7/