Values of the $\mathfrak{sl}_2$ Weight System on Complete Bipartite Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 73-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A weight system is a function on chord diagrams that satisfies the so-called four-term relations. Vassiliev's theory of finite-order knot invariants describes these invariants in terms of weight systems. In particular, there is a weight system corresponding to the colored Jones polynomial. This weight system can be easily defined in terms of the Lie algebra $\mathfrak{sl}_2$, but this definition is too cumbersome from the computational point of view, so that the values of this weight system are known only for some limited classes of chord diagrams. In the present paper we give a formula for the values of the $\mathfrak{sl}_2$ weight system for a class of chord diagrams whose intersection graphs are complete bipartite graphs with no more than three vertices in one of the parts. Our main computational tool is the Chmutov–Varchenko reccurence relation. Furthermore, complete bipartite graphs with no more than three vertices in one of the parts generate Hopf subalgebras of the Hopf algebra of graphs, and we deduce formulas for the projection onto the subspace of primitive elements along the subspace of decomposable elements in these subalgebras. We compute the values of the $\mathfrak{sl}_2$ weight system for the projections of chord diagrams with such intersection graphs. Our results confirm certain conjectures due to S. K. Lando on the values of the weight system $\mathfrak{sl}_2$ at the projections of chord diagrams on the space of primitive elements.
Keywords: chord diagram, intersection graph, weight system, complete bipartite graph, Hopf algebra.
@article{FAA_2020_54_3_a6,
     author = {P. A. Filippova},
     title = {Values of the $\mathfrak{sl}_2$ {Weight} {System} on {Complete} {Bipartite} {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--93},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a6/}
}
TY  - JOUR
AU  - P. A. Filippova
TI  - Values of the $\mathfrak{sl}_2$ Weight System on Complete Bipartite Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 73
EP  - 93
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a6/
LA  - ru
ID  - FAA_2020_54_3_a6
ER  - 
%0 Journal Article
%A P. A. Filippova
%T Values of the $\mathfrak{sl}_2$ Weight System on Complete Bipartite Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 73-93
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a6/
%G ru
%F FAA_2020_54_3_a6
P. A. Filippova. Values of the $\mathfrak{sl}_2$ Weight System on Complete Bipartite Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 73-93. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a6/

[1] D. Bar-Natan, “On Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl

[2] A. Bigeni, “A generalization of the Kreweras triangle through the universal $\mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326 ; arXiv: 1712.05475v3 | DOI | MR | Zbl

[3] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge University Press, Cambridge, 2012 ; arXiv: 1103.5628 | MR | Zbl

[4] S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7 (2007), 1579–1598 ; arXiv: 0704.1313v1 | DOI | MR | Zbl

[5] S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $\mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178 | DOI | MR | Zbl

[6] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998

[7] S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139 | DOI | MR | Zbl

[8] M. Kontsevich, “Vassiliev knot invariants”, Adv. Soviet Math., 16, no. 2, Amer. Math. Soc., Providence, RI, 1993, 137–150 | MR | Zbl

[9] E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, “On a weight system conjecturally related to $\mathfrak{sl}_2$”, European J. Combin., 41 (2014), 266–277 ; arXiv: 1307.4933v2 | DOI | MR | Zbl

[10] S. Lando, “On primitive elements in the bialgebra of chord diagrams”, Amer. Math. Soc. Transl. Ser. 2, no. 180, Amer. Math. Soc., Providence, RI, 1997, 167–171 | MR

[11] S. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory, Ser. B, 80:1 (2000), 104–121 | DOI | MR | Zbl

[12] S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755 | DOI | MR | Zbl

[13] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[14] J. Milnor, J. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81 (1965), 211–264 | DOI | MR | Zbl

[15] W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330 | DOI | MR | Zbl

[16] V. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69 | MR