Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_3_a5, author = {Minh-Phuong Tran and Thanh-Nhan Nguyen}, title = {A {Remark} on the {Interpolation} {Inequality} between {Sobolev} {Spaces} and {Morrey} {Spaces}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {63--72}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/} }
TY - JOUR AU - Minh-Phuong Tran AU - Thanh-Nhan Nguyen TI - A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 63 EP - 72 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/ LA - ru ID - FAA_2020_54_3_a5 ER -
%0 Journal Article %A Minh-Phuong Tran %A Thanh-Nhan Nguyen %T A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces %J Funkcionalʹnyj analiz i ego priloženiâ %D 2020 %P 63-72 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/ %G ru %F FAA_2020_54_3_a5
Minh-Phuong Tran; Thanh-Nhan Nguyen. A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 63-72. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/
[1] D. R. Adams, Lecture Notes on $L^p$-Potential Theory, Dept. of Math., University of Umea, Umea, 1981
[2] D. R. Adams, L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin–Heidelberg, 1996 | MR
[3] R. A. Adams, J. J. F. Fourier, Sobolev spaces, Pure and Applied Mathematics, 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003 | MR
[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011 | MR | Zbl
[5] N. A. Dao, J. I. Díaz, Q.-H. Nguyen, “Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces”, Nonlinear Anal., 173 (2018), 146–153 | DOI | MR | Zbl
[6] D. S. McCormick, J. C. Robinson, J. L. Rodrigo, “Generalised Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO”, Milan J. Math., 81:2 (2013), 265–289 | DOI | MR | Zbl
[7] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162 | MR | Zbl
[8] G. Patalucci, A. Pisante, “Improved Sobolev embeddings, profile decomposition, and concentrationcompactness for fractional Sobolev spaces”, Calc. Var. Partial Differential Equations, 50:3–4 (2014), 799–829 | MR
[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[10] E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton, NJ, 2011 | MR | Zbl
[11] J. Van Schaftingen, “Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg interpolation inequalities”, Port. Math., 71:3 (2014), 159–175 | DOI | MR | Zbl