A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation inequalities play an important role in the study of PDEs and their applications. There are still some interesting open questions and problems related to integral estimates and regularity of solutions to elliptic and/or parabolic equations. The main purpose of our work is to provide an important observation concerning the $L^p$-boundedness property in the context of interpolation inequalities between Sobolev and Morrey spaces, which may be useful for those working in this domain. We also construct a nontrivial counterexample, which shows that the range of admissible values of $p$ is optimal in a certain sense. Our proofs rely on integral representations and on the theory of maximal and sharp maximal functions.
Keywords: interpolation inequality, $L_p$-boundedness, Morrey spaces, Hardy–Littlewood maximal operator.
Mots-clés : Sobolev spaces
@article{FAA_2020_54_3_a5,
     author = {Minh-Phuong Tran and Thanh-Nhan Nguyen},
     title = {A {Remark} on the {Interpolation} {Inequality} between {Sobolev} {Spaces} and {Morrey} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/}
}
TY  - JOUR
AU  - Minh-Phuong Tran
AU  - Thanh-Nhan Nguyen
TI  - A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 63
EP  - 72
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/
LA  - ru
ID  - FAA_2020_54_3_a5
ER  - 
%0 Journal Article
%A Minh-Phuong Tran
%A Thanh-Nhan Nguyen
%T A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 63-72
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/
%G ru
%F FAA_2020_54_3_a5
Minh-Phuong Tran; Thanh-Nhan Nguyen. A Remark on the Interpolation Inequality between Sobolev Spaces and Morrey Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 63-72. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a5/

[1] D. R. Adams, Lecture Notes on $L^p$-Potential Theory, Dept. of Math., University of Umea, Umea, 1981

[2] D. R. Adams, L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin–Heidelberg, 1996 | MR

[3] R. A. Adams, J. J. F. Fourier, Sobolev spaces, Pure and Applied Mathematics, 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003 | MR

[4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011 | MR | Zbl

[5] N. A. Dao, J. I. Díaz, Q.-H. Nguyen, “Generalized Gagliardo-Nirenberg inequalities using Lorentz spaces, BMO, Hölder spaces and fractional Sobolev spaces”, Nonlinear Anal., 173 (2018), 146–153 | DOI | MR | Zbl

[6] D. S. McCormick, J. C. Robinson, J. L. Rodrigo, “Generalised Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO”, Milan J. Math., 81:2 (2013), 265–289 | DOI | MR | Zbl

[7] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162 | MR | Zbl

[8] G. Patalucci, A. Pisante, “Improved Sobolev embeddings, profile decomposition, and concentrationcompactness for fractional Sobolev spaces”, Calc. Var. Partial Differential Equations, 50:3–4 (2014), 799–829 | MR

[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[10] E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton, NJ, 2011 | MR | Zbl

[11] J. Van Schaftingen, “Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg interpolation inequalities”, Port. Math., 71:3 (2014), 159–175 | DOI | MR | Zbl