The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the polynomiality of the bigraded ring $J_{*,*}^{w, W}(F_4)$ of weak Jacobi forms for the root system $F_4$ which are invariant with respect to the corresponding Weyl group. This work is a continuation of a joint article with V. A. Gritsenko, where the structure of the algebras of weak Jacobi forms related to the root systems of $D_n$ type for $2\leqslant n \leqslant 8$ was studied.
Keywords: Jacobi forms, invariant theory.
@article{FAA_2020_54_3_a1,
     author = {D. V. Adler},
     title = {The {Structure} of the {Algebra} of {Weak} {Jacobi} {Forms} for the {Root} {System} $F_4$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {8--25},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/}
}
TY  - JOUR
AU  - D. V. Adler
TI  - The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 8
EP  - 25
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/
LA  - ru
ID  - FAA_2020_54_3_a1
ER  - 
%0 Journal Article
%A D. V. Adler
%T The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 8-25
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/
%G ru
%F FAA_2020_54_3_a1
D. V. Adler. The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/

[1] C. Chevalley, “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[2] I. N. Bernshtein, O. V. Shvartsman, “Teorema Shevalle dlya kompleksnykh kristallograficheskikh koksterovskikh grupp”, Funkts. analiz i ego pril., 12:4 (1978), 79–80 | MR

[3] E. Looijenga, “Root systems and elliptic curves”, Invent. Math., 38:1 (1976), 17–32 | DOI | MR | Zbl

[4] E. Looijenga, “Invariant theory for generalized root systems”, Invent. Math., 61:1 (1980), 1–32 | DOI | MR | Zbl

[5] V. Kac, D. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53:2 (1984), 125–264 | DOI | MR | Zbl

[6] K. Wirthmüller, “Root systems and Jacobi forms”, Compositio Math., 82:3 (1992), 293–354 | MR | Zbl

[7] H. Wang, Weyl invariant $E_8$ Jacobi forms, arXiv: 1801.08462

[8] K. Saito, “Extended Affine Root Systems I. Coxeter transformations”, Publ. Res. Inst. Math. Sci., 21:1 (1985), 75–179 | DOI | MR | Zbl

[9] K. Saito, “Extended Affine Root Systems II. Flat Invariants”, Publ. Res. Inst. Math. Sci., 26:1 (1990), 15–78 | DOI | MR | Zbl

[10] B. N. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 | DOI | MR | Zbl

[11] I. Satake, “Flat structure for the simple elliptic singularity of type ${\widetilde E}_6$ and Jacobi form”, Proc. Japan Acad., Ser. A, 69:7 (1993), 247–251 | DOI | MR | Zbl

[12] M. Bertola, “Frobenius manifold structure on orbit space of Jacobi groups. I”, Differential Geom. Appl., 13:1 (2000), 19–41 | DOI | MR | Zbl

[13] M. Bertola, “Frobenius manifold structure on orbit space of Jacobi groups. II”, Differential Geom. Appl., 13:3 (2000), 213–233 | DOI | MR | Zbl

[14] D. Adler, V. Gritsenko, “The $D_8$-tower of weak Jacobi forms and applications”, J. Geom. Phys., 150 (2020), 103616 | DOI | MR | Zbl

[15] N. Burbaki, Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdaemye ottrazheniyami sistemy kornei, Mir, M., 1972

[16] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progress in Math., 55, Birkhäuser, Boston, MA, 1985 | DOI | MR | Zbl

[17] D. Mumford, Tata Lectures on Theta. I, Progress in Math., 28, Birkhäuser, Boston, MA, 1983 | DOI | MR

[18] V. A. Gritsenko, Jacobi modular forms: 30 ans après. Course of lectures on Coursera 2016–2018 https://ru.coursera.org/learn/modular-forms-jacobi

[19] F. Cléry, V. Gritsenko, “Modular forms of orthogonal type and Jacobi theta-series”, Abh. Math. Semin. Univ. Hamburg, 83:2 (2013), 187–217 | DOI | MR | Zbl