The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the polynomiality of the bigraded ring $J_{*,*}^{w, W}(F_4)$ of weak Jacobi forms for the root system $F_4$ which are invariant with respect to the corresponding Weyl group. This work is a continuation of a joint article with V. A. Gritsenko, where the structure of the algebras of weak Jacobi forms related to the root systems of $D_n$ type for $2\leqslant n \leqslant 8$ was studied.
Keywords: Jacobi forms, invariant theory.
@article{FAA_2020_54_3_a1,
     author = {D. V. Adler},
     title = {The {Structure} of the {Algebra} of {Weak} {Jacobi} {Forms} for the {Root} {System} $F_4$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {8--25},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/}
}
TY  - JOUR
AU  - D. V. Adler
TI  - The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 8
EP  - 25
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/
LA  - ru
ID  - FAA_2020_54_3_a1
ER  - 
%0 Journal Article
%A D. V. Adler
%T The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 8-25
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/
%G ru
%F FAA_2020_54_3_a1
D. V. Adler. The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/