The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the polynomiality of the bigraded ring $J_{*,*}^{w, W}(F_4)$ of weak Jacobi forms for the root system $F_4$ which are invariant
with respect to the corresponding Weyl group. This work is a continuation of a joint article with V. A. Gritsenko, where the structure of the algebras of weak Jacobi forms related to the root systems of $D_n$ type for $2\leqslant n \leqslant 8$ was studied.
Keywords:
Jacobi forms, invariant theory.
@article{FAA_2020_54_3_a1,
author = {D. V. Adler},
title = {The {Structure} of the {Algebra} of {Weak} {Jacobi} {Forms} for the {Root} {System} $F_4$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {8--25},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/}
}
D. V. Adler. The Structure of the Algebra of Weak Jacobi Forms for the Root System $F_4$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a1/