Transition functions of diffusion processes on the Thoma simplex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 58-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2020_54_2_a4,
     author = {S. Korotkikh},
     title = {Transition functions of  diffusion processes on the {Thoma} simplex},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {58--77},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a4/}
}
TY  - JOUR
AU  - S. Korotkikh
TI  - Transition functions of  diffusion processes on the Thoma simplex
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 58
EP  - 77
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a4/
LA  - ru
ID  - FAA_2020_54_2_a4
ER  - 
%0 Journal Article
%A S. Korotkikh
%T Transition functions of  diffusion processes on the Thoma simplex
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 58-77
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a4/
%G ru
%F FAA_2020_54_2_a4
S. Korotkikh. Transition functions of  diffusion processes on the Thoma simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 58-77. http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a4/

[1] T. H. Baker, P. J. Forrester, “The Calogero–Sutherland model and generalised classical polynomials”, Comm. Math. Phys., 188:1 (1997), 175–216 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, “Z-measures on partitions and their scaling limits”, European J. Combin., 26:6 (2005), 795–834 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Relat. Fields, 144:1–2 (2009), 281–318 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov dynamics on the Thoma cone: a model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab., 18 (2013), 75 | DOI | MR | Zbl

[5] P. Desrosiers, M. Hallnäs, “Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type”, SIGMA, 8 (2012), 049 | MR | Zbl

[6] S. N. Ethier, “Eigenstructure of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 29:3 (1992), 487–498 | DOI | MR | Zbl

[7] S. N. Ethier, “A property of Petrov's diffusion”, Electron. Commun. Probab., 19 (2014), 65 | DOI | MR | Zbl

[8] S. N. Ethier, T. G. Kurtz, “The infinitely-many-neutral-allels diffusion model”, Adv. in Appl. Probab., 13:3 (1981), 429–452 | DOI | MR | Zbl

[9] S. Feng, W. Sun, F.-Y. Wang, F. Xu, “Functional inequalities for the two-parameter extension of the infinitely-many-neutral-alleles diffusion”, J. Funct. Anal., 260:2 (2011), 399–413 | DOI | MR | Zbl

[10] O. Gorodetsky, B. Rodgers, The variance of the number of sums of two squares in $\mathbb{F}_q[T]$ in short intervals, arXiv: 1810.06002

[11] S. Kerov, “The boundary of Young lattice and random Young tableaux”, Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., no. 24, Amer. Math. Soc., Providence, RI, 1996, 133–158 | MR | Zbl

[12] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Int. Math. Res. Notices, 1998:4 (1998), 173–199 | DOI | MR | Zbl

[13] J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993 | MR | Zbl

[14] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[15] A. Okounkov, G. Olshanski, “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4:1 (1997), 68–78 | DOI | MR

[16] G. Olshanski, “Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter”, Int. Math. Res. Notices, 2010:6 (2010), 1102–1166 | MR | Zbl

[17] G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. nauchn. sem. POMI, 378 (2010), 81–110 | MR

[18] G. I. Olshanskii, “Topologicheskii nositel z-mer na simplekse Toma”, Funkts. analiz i ego pril., 52:4 (2018), 86–88 | DOI | MR | Zbl

[19] L. A. Petrov, “Dvukhparametricheskoe semeistvo beskonechnomernykh diffuzii na simplekse Kingmana”, Funkts. analiz i ego pril., 43:4 (2009), 45–66 | DOI | MR | Zbl

[20] J. Pitman, The two-parameter generalization of Ewens' random partition structure, Technical report 345, Dept. Statistics, U. C. Berkeley, 1992 https://statistics.berkeley.edu/tech-reports/345