Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_2_a2, author = {B. Ya. Kazarnovskii}, title = {Average number of solutions for systems of equations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {35--47}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/} }
B. Ya. Kazarnovskii. Average number of solutions for systems of equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 35-47. http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/
[1] D. Akhiezer, B. Kazarnovskii, “Average number of zeros and mixed symplectic volume of Finsler sets”, Geom. Funct. Anal., 28:6 (2018), 1517–1547 | DOI | MR | Zbl
[2] D. Akhiezer, B. Kazarnovskii, The ring of normal densities, Gelfand transform and smooth BKK-type theorems, arXiv: 1907.00633
[3] S. Alesker, “Theory of valuations on manifolds: a survey”, Geom. Funct. Anal., 17:4 (2007), 1321–1341 | DOI | MR | Zbl
[4] S. Alesker, J. Bernstein, “Range characterization of the cosine tranform on higher Grassmanians”, Adv. Math., 184:2 (2004), 367–379 | DOI | MR | Zbl
[5] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4
[6] D. Yu. Burago, S. Ivanov, “Izometricheskie vlozheniya finslerovykh mnogoobrazii”, Algebra i analiz, 5:1 (1993), 179–192 | MR | Zbl
[7] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969 | MR | Zbl
[8] J. Nash, “The imbedding problem for Riemannian manifolds”, Ann. of Math., 63:1 (1956), 20–63 | DOI | MR | Zbl
[9] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia of Math, and its Appl., no. 44, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[10] R. Schneider, “Crofton measures in projective Finsler Spaces”, Integral Geometry and Convexity (Wuhan, China, 18–23 October 2004), World Sci. Publ., Hackensack, NJ, 2006, 67–98 | DOI | MR | Zbl
[11] D. N. Zaporozhets, Z. Kabluchko, “Sluchainye opredeliteli, smeshannye ob'emy ellipsoidov i nuli gaussovskikh sluchainykh polei”, Zap. nauchn. sem. POMI, 408 (2012), 187–196