Average number of solutions for systems of equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 35-47

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n$ finite-dimensional spaces of smooth functions $V _i $ on a smooth $n$-dimensional manifold $X$, the systems of equations $ \{f_i = a_i \colon \: f_i \in V_i, \: a_i \in \mathbb{R}, \: i = 1, \ldots, n \} $ are considered. A connection is established between the average numbers of solutions and the mixed volumes of convex bodies. To do this, fixing Banach metrics of the spaces $ V_i $, we construct 1) measures in the spaces of systems of equations, and 2) Banach convex bodies in $X$, those. families of centrally symmetric convex bodies in the layers of the cotangent bundle $X$. It is proved that the average number of solutions is equal to the mixed symplectic volume of Banach convex bodies. The case of Euclidean metrics in the spaces $ V_i $ was previously considered. In this case, the Banach bodies are ellipsoid families.
Keywords: Banach space, Crofton formula, normal density, mixed volume.
@article{FAA_2020_54_2_a2,
     author = {B. Ya. Kazarnovskii},
     title = {Average number of solutions for systems of equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - Average number of solutions for systems of equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 35
EP  - 47
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/
LA  - ru
ID  - FAA_2020_54_2_a2
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T Average number of solutions for systems of equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 35-47
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/
%G ru
%F FAA_2020_54_2_a2
B. Ya. Kazarnovskii. Average number of solutions for systems of equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 35-47. http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a2/